K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

A B C H K E

a)Xét ΔADB và ΔADE có:

AB=AE(gt)

\(\widehat{BAD}=\widehat{EAD}\left(gt\right)\)

AD:cạnh chung

=> ΔADB=ΔADE(c.g.c)

b)Vì: ΔADB=ΔADE(cmt)

=> \(\widehat{ABD}=\widehat{AED};BD=DE\)

Xét ΔDBH và ΔDEK có:

\(\widehat{BHD}=\widehat{EKD}=90^o\left(gt\right)\)

BD=DE(cmt)

\(\widehat{HBD}=\widehat{KED}\left(cmt\right)\)

=>ΔDBH=ΔDEK(cạnh huyền-góc nhọn)

=>BH=EK

 

25 tháng 12 2016

Ta có hình vẽ sau:

 

 

 

 

A B E C D H K

a/ Xét ΔADB và ΔADE có:

AD: Cạnh chung

\(\widehat{BAD}=\widehat{EAD}\) (gt)

AB = AE (gt)

=> ΔADB = ΔADE (c.g.c) (đpcm)

b/ Vì ΔADB = ΔADE (ý a) => \(\widehat{ABD}=\widehat{AED}\) (2 góc tương ứng)

và DB = DE (2 cạnh tương ứng)

Xét 2Δ vuông: ΔDBH và ΔDEK có:

DB = DE (cmt)

\(\widehat{ABD}=\widehat{AED}\) (cmt)

=> ΔDBH = ΔDEK (cạnh huyền - góc nhọn)

=> BH = EK(2 cạnh tương ứng)(đpcm)

a: Xét ΔADB và ΔADE có

AD chung

góc BAD=góc EAD

AB=AE

=>ΔABD=ΔAED

b: Xét ΔBHD vuông tại H và ΔEKD vuông tại K có

DB=DE

góc DBH=góc DEK

=>ΔBHD=ΔEKD

=>BH=EK

c: góc DEM=góc KDE

góc KDE=góc BDH

=>góc DEM=góc BDH

d: góc DEM+góc ACD

=góc BDH+góc ACD

=90 độ-góc CDE

a) Có : \(\widehat{ABC}+\widehat{ABD}=\widehat{ACB}+\widehat{ACE}=180^o\)

Mà : \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

-Xét tam giác ABD và ACE có :

AB=AC (tam giác ABC cân tại A)

BD=CE(đều bằng AB)

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

=> Tam giác ABD=ACE(c.g.c)

=> AD=AE

=> Tam giác ADE cân tại A(đccm)

b) Tam giác ABC cân tại A có : \(\widehat{BAC}=40^o\)

\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-40^o}{2}=70^o\)

- Có : \(\widehat{ABC}+\widehat{ABD}=180^o\)

\(\Rightarrow70^o+\widehat{ABD}=180^o\)

\(\Rightarrow\widehat{ABD}=110^o\)

- Xét tam giác ABD cân tại B(BD=AB) có :

\(\widehat{ABD}+\widehat{BAD}+\widehat{ ADB}=180^o\)

\(\Rightarrow110^o+\widehat{BAD}+\widehat{ADB}=180^o\)

\(\Rightarrow\widehat{BAD}=\widehat{BDA}=\frac{180^o-110^o}{2}=35^o\)

- Tương tự, ta có : \(\widehat{AEC}=\widehat{CAE}=35^o\)

- Có : \(\widehat{DAE}=\widehat{DAB} +\widehat{CAE}+\widehat{BAC}=35^o+35^o+40^o=110^o\)

Vậy : \(\widehat{D}=\widehat{E}=35^o,\widehat{DAE}=110^o\)

c) Tam giác ABD cân tại B(AB=BD) có \(BH\perp DA\)

=> HD=HA(t/c đg TT,PG,cao,.. của tam giác cân)

Tương tự có AK=KE

Mà : AD=AE(tam giác ADE cân tại A)

=> AH=AK

-Xét tam giác AHO và AKO, có :

AH=AK(cmt)

\(\widehat{AHO}=\widehat{AKO}=90^o\)

AO-cạnh chung

=> Tam giác AHO=AKO(cạnh huyền-cạnh góc vuông)

=> HO=OK(đccm)

d) Do tam giác AHO=AKO(cmt)

=> \(\widehat{HAO}=\widehat{KAO}\)

\(\Rightarrow\widehat{HAB}+\widehat{BAO}=\widehat{KAC}+\widehat{CAO}\)

Mà : \(\widehat{HAB}=\widehat{KAC}=35^o\left(cmt\right)\)

Mà :\(\widehat{BAO}+\widehat{CAO}=\widehat{BAC}\)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}=\frac{\widehat{BAC}}{2}=\frac{40}{2}=20^o\)

- Gọi giao điểm của AO và BC là I

Xét tam giác AIB có : \(\widehat{BAI}+\widehat{ABI}+\widehat{AIB}=180^o\)

\(\Rightarrow20^o+70^o+\widehat{AIB}=180^o\)

\(\Rightarrow90^o+\widehat{AIB}=180^o\)

\(\Rightarrow\widehat{AIB}=90^o\)

\(\Rightarrow AI\perp BC\left(đccm\right)\)

#H

a: Xét ΔADB và ΔADE có

AD chung

góc BAD=góc EAD

AB=AE

=>ΔADB=ΔADE

=>góc ABD=góc AED

b: Xét ΔAEF vuông tại A và ΔABC vuông tại A có

AE=AB

góc AEF=góc ABC

=>ΔAEF=ΔABC

=>AC=AF

31 tháng 12 2023

a: Xét ΔABC và ΔADE có

AB=AD

\(\widehat{BAC}=\widehat{DAE}\)(hai góc đối đỉnh)

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAHB vuông tại H và ΔAKD vuông tại K có

AB=AD

\(\widehat{ABH}=\widehat{ADK}\)(ΔABC=ΔADE)

Do đó: ΔAHB=ΔAKD

=>BH=DK

c: Ta có: ΔAHB=ΔAKD

=>\(\widehat{HAB}=\widehat{DAK}\)

mà \(\widehat{HAB}+\widehat{HAD}=180^0\)(hai góc kề bù)

nên \(\widehat{DAK}+\widehat{DAH}=180^0\)

=>K,A,H thẳng hàng