K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

a: Xét ΔADB và ΔADC có 

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔADB=ΔADC

28 tháng 2 2019

a, xet tam giac ABD va tam giac ACD co : AD chung

AB = AC do tam giac ABC can tai A (gt)

goc BAD = goc CAD do AD la phan giac cua goc A (gt)

=> tam giac ABD = tam giac ACD (c - g - c)

=> BD = CD (dn)

xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...

goc B = goc C do tam giac ABC can tai  A(gt)

=> tam giac BED = tam giac CFD (ch - gn)

=> DE = DF (dn)

b, cm o cau a

c, tam giac ABD = tam giac ACD (cau a)

=> goc ADC = goc ADB (dn)

goc ADC + goc ADB = 180 (kb)

=> goc ADC = 90

co DB = DC (cau a)

=> AD la trung truc cua BC (dn)

25 tháng 3 2022

dn là j ă bạn?

 

 

 

19 tháng 2 2022

a. xét tam giác vuông ADE và tam giác vuông ADF,có :

AB = AC ( ABC cân )

Góc EAD = góc FAD ( gt )

AD : cạnh chung

Vậy  tam giác vuông ADE = tam giác vuông ADF ( c.g.c )

=> DE = DF ( 2 cạnh tương ứng )

b. xét tam giác vuông BDE và tam giác vuông CDF, có:

góc B = góc C ( ABC cân )

BD = CD ( AD là đường phân giác cũng là đường trung tuyến trong tam giác cân ABC )

Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền. góc nhọn)

c. ta có: AD là đường phân giác trong tam giác cân ABC cũng là đường trung trực của BC

 

a: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

\(\widehat{EAD}=\widehat{FAD}\)

Do đó: ΔAED=ΔAFD

SUy ra: DE=DF

b: Xét ΔBDE vuông tại E và ΔCDF vuông tại F có 

BD=CD

DE=DF

Do đó: ΔBDE=ΔCDF

c: Ta có: ΔABC cân tại A

mà AD là phân giác

nên AD là đường trung trực của BC

29 tháng 12 2021

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔABD=ΔACD

a: XétΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: DF=DC

hay ΔDFC cân tại D

b: Ta có: DE=DA

mà DA<DF

nên DE<DF

16 tháng 9 2023

a: Xét ΔADB và ΔADC có

AB=AC
góc BAD=góc CAD

AD chung

=>ΔADB=ΔADC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD
=>AE=AF và DE=DF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

4 tháng 3 2021

Tự vẽ hình nha:v

a) Xét \(\Delta AED\) và \(\Delta AFD:\)

AD: cạnh chung

\(\widehat{EAD}=\widehat{FAD}\) (AD là tia phân giác góc A)

\(\widehat{AED}=\widehat{AFD}=90^o\)

=> \(\Delta AED=\Delta AFD\left(ch.gn\right)\)

=> DE=DF (2 cạnh t/ứ)

b) Vì tam giác ABC có AB=AC => Tam giác ABC cân tại A

=> \(\widehat{ABC}=\widehat{ACB}\)

Xét ∆BED và ∆CFD:

DE=DF(cm câu a)

\(\widehat{BED}=\widehat{CFD}=90^o\)

\(\widehat{EBD}=\widehat{FCD}\left(cmt\right)\)

=> ∆BED=∆CFD(cgv.gn)

c. Trong tam giác cân, đường phân giác đồng thời là đường cao

=> AD vuông góc với BC

Mà BD=DC(∆BED=∆CFD) 

=> AD là trung trực của BC

a) Xét ΔABD và ΔACD có

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

Suy ra: BD=CD(hai cạnh tương ứng)

Xét ΔEDB vuông tại E và ΔFDC vuông tại F có 

DB=DC(cmt)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔEDB=ΔFDC(cạnh huyền-góc nhọn)

Suy ra: DE=DF(hai cạnh tương ứng)

6 tháng 4 2018

ta có : BC2 = 102 = 100

          AC2 +AB2 =62 + 82 =36 +64 = 100

       BC2 =AC2 + AB2

suy ra tam giác ABC vuông tại A ( định lý pytago đảo )

Hộ mik với ạ mik cần gấp cảm ơn ạBài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.a) Chứng minh ∆MNP vuôngb) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.Chứng minh ∆MNI = ∆KIc) Tia IK cắt tia NM tại Q. Chứng minh KP = MQd) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cânBài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc vớiBC tại D. Kẻ DE vuông góc với AB tại E, DF...
Đọc tiếp

Hộ mik với ạ mik cần gấp cảm ơn ạ

Bài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.
a) Chứng minh ∆MNP vuông
b) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.
Chứng minh ∆MNI = ∆KI
c) Tia IK cắt tia NM tại Q. Chứng minh KP = MQ
d) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cân
Bài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc với
BC tại D. Kẻ DE vuông góc với AB tại E, DF vuông góc với AC tại F.
a) Chứng minh ∆ADB = ∆ADC
b) Tính độ dài AC
c) Giả sử ̂ = 740

. Tính góc ABC

d) Chững minh DE = DF
e) Chứng minh AE = AF
f) Chứng minh DE //BC
Bài 3: Cho ∆MNP có MN = MP = 13cm, NP = 10cm. Kẻ MD vuông góc với NP
tại D.
a) Chứng minh: ND = PD và ̂ ̂
b) Tính độ dài MD
c) Kẻ DA vuông góc MN tại I và IA = ID; kẻ DB vuông góc MP tại H và DH =
BH. Chứng minh rằng AM = MD
d) Chứng minh ∆MAB cân
e) Chứng minh AN vuông góc AM
f) Gọi giao điểm của AB và MN là E, giao điểm của AB và MP là F. Chứng
minh DM là tia phân giác của góc EDF
Bài 4: Cho ∆ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính độ dài BC
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AB. ∆ABD có dạng đặc
biệt gì? Vì sao?
c) Lấy trên tia đối của tia AB điểm E sao cho AE = AC .chứng minh DE = BC
Bài 5: cho ∆ABC cân tại A, có góc C= 300

. Vẽ phân giác AD ( D BC). Vẽ DE

vuông góc với AB, DF vuông góc AC.
a) Chứng minh ∆DEF đều
b) Chứng minh ∆BED = ∆CFD
c) Kẻ BM//AD ( M AC) chứng minh ∆ABM đều

0