K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

(Tự vẽ hình nhé!)

a) Xét \(\Delta ABM\)và \(\Delta DCM\)có:

\(\widehat{M_1}=\widehat{M_2}\)(Đối đỉnh)

\(BM=CM\left(gt\right)\)

\(AM=DM\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

b) Ta có: M là trung điểm BC

              M là trung điểm AD

\(\Rightarrow\)Tứ giác ABCD là hình bình hành

\(\Rightarrow AB\)// \(CD\)

c) Xét \(\Delta ABC\)có: \(AB=AC\Rightarrow\Delta ABC\)cân tại \(A\)

\(\Rightarrow AM\)vừa là đường trung tuyến vừa là đường cao

\(\Rightarrow AM⊥BC\)

d) Câu này chưa hiểu => chưa giải

26 tháng 12 2017

A B C M D

*Xét ΔABM và ΔACM có:

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BM=MC\left(M.l\text{à}.trung.\text{đ}i\text{ểm}.c\text{ủa}.BC\right)\\AM.c\text{ạnh}.chung\end{matrix}\right.\)

⇒ ΔABM = ΔACM (c - c - c)

*Vì ΔABM = ΔACM (cmt)

\(\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng) Ta có: \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù) ⇒ \(\widehat{AMB}=\widehat{AMC}\) = \(\dfrac{180^o}{2}=90^o\) ⇒ AM ⊥ BC *Xét ΔAMB và ΔDMC có: \(\left\{{}\begin{matrix}AM=MD\left(gt\right)\\\widehat{AMB}=\widehat{DMC}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BM=MC\left(gt\right)\end{matrix}\right.\) ⇒ ΔAMB = ΔDMC (c - g - c) ⇒ \(\widehat{ABM}=\widehat{DCM}\) (hai góc tương ứng) Mà hai góc này ở vị trí so le trong ⇒ AB // CD