K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2016

A B C D E F  

ta có tam giác ABC là tam giác cân có góc B=góc C

            mà góc CEB=góc ACB(đồng vị)

        =>góc B=góc CEB=>tam giác DBE cân tại D

    =>BD=DE mà DE=CE

   =>BD=CE

nếu đúng thì tick mình nha

14 tháng 1 2016

Xét tam giác DEI và FCI, có:

EI = CI (gt)

DEI = FCI ( DE // AC và slt)

DIE = FIC (đ đ)

=> tam giác DEI = tam giác FCI (gcg)

=> DE = CF (1)

Vì: DEB = ACB ( DE // AC và 2 góc đồng vị) và B = C ( tam giác ABC cân tại A)

=> ABC = DEB => Tam giác BDE cân tại D => BD = DE (2)

Từ 1 và 2 => BD = CF (= DE)

a)

Xét ΔABD và ΔAED có:

AB=AE (giả thiết)

Góc BAD= góc EAD (do AD là phân giác góc A)

AD chung

⇒⇒ ΔABD=ΔAED (c-g-c)

b) Ta có ΔABD=ΔAED

⇒⇒ BD=DE và góc ABD= góc AED

⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)

Xét ΔDBF và ΔDEC có:

BD=DE

Góc DBF= góc DEC

Góc BDF= góc EDC ( đối đỉnh )

⇒⇒ ΔDBF=ΔDEC (g-c-g)

b) Ta có: ΔBAD=ΔBED(cmt)

nên DA=DE(hai cạnh tương ứng)

Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE(Đpcm)

Sửa đề: BA=BE

a) Xét ΔBAD và ΔBED có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔBAD=ΔBED(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE⊥BC(đpcm)

17 tháng 5 2019

đề bài phần a bị sai nhé bn , phải là BE // AC mới đúng

a ) Xét tam giác AMC và tam giác EMB có :

MA = ME ( gt )

\(\widehat{EMB}=\widehat{AMC}\) ( hai góc đối đỉnh )

MB = MC ( do AM là đường trung tuyến )

nên tam giác AMC = tam giác EMB ( c.g.c )

=> \(\widehat{CAM}=\widehat{MEB}\)

Mà hai góc này ở vị trí so le trong => BE//AC

17 tháng 5 2019

um câu a mk chép sai đề 

BE // AC nha 

a) Xét ΔAED và ΔCEF có 

EA=EC(E là trung điểm của AC)

\(\widehat{AED}=\widehat{CEF}\)(hai góc đối đỉnh)

ED=EF(gt)

Do đó: ΔAED=ΔCEF(c-g-c)

⇒AD=CF(hai cạnh tương ứng)

mà AD=BD(D là trung điểm của AB)

nên CF=BD(đpcm)

Ta có: ΔAED=ΔCEF(Cmt)

nên \(\widehat{ADE}=\widehat{CFE}\)(hai góc tương ứng)

mà \(\widehat{ADE}\) và \(\widehat{CFE}\) là hai góc ở vị trí so le trong

nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song)

hay CF//AB(đpcm)

 

25 tháng 1 2022

a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm) a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm)

8 tháng 4 2020

Hình như bạn viết nhầm đề thì phải

10 tháng 4 2020

Không phải toán 7

13 tháng 1 2022

vào đây tham khảo nhé

https://olm.vn/hoi-dap/detail/98773432332.html

a: Xét ΔMDB và ΔMEF có

MD=ME

\(\widehat{DMB}=\widehat{EMF}\)

MB=MF

Do đó: ΔMDB=ΔMEF

b: Ta có: ΔMDB=ΔMEF

nên EF=DB=EC

hay ΔECF cân tại E