Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Zero Two - Toán lớp 7 - Học toán với OnlineMath
a) Xét tam giác ABD và tam giác ACE có
góc ADB = góc AEC = 90 độ
AB=AC
góc A: chung
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn)
=> BD=CE và AD=AE
b) Vì AB=AC và AE=AD => AB-AE=AC-AD => BE=CD
Xét tam giác OEB và tam giác ODC có
góc OEB = góc ODC = 90 độ
BE=CD
góc BOE = góc COD (đối đỉnh)
=> tam giác OEB = tam giác ODC => OB=OC
c) Xét tam giác AOB và tam giác AOC có
AB=AC
OB=OC
AO: cạnh chung
=> tam giác AOB = tam giác AOC (c.c.c)
=> góc OAB=góc OAC
=> AO la tia phân giác góc BAC
a,Xét tam giác ABD và tam giác ACB có
AB=AC(gt)
D2=E2=90 độ
A góc chung
=>tam giác ABD=tam giác ACB(ch-gn)
b,Xét tam giác EBC và tam giác DCB có
E1=D1=90 độ
góc B= góc C theo tam giác cân
BC cạnh chung
=> 2 tam giác = nhau (g.c.g)
=>EB=DC(cặp cạnh tg ứng)
XÉt tam giác EOB và DOC có
E1=B1 = 90 độ
EB=DC(cmt)
O1=O2(đđ)
=>Tam giác EOB=DOC(g.c.g)
=>OE=OD(cặp canh tg ứng)
còn OD=OC mk hok bít làm
Tự kẻ hình nha bn^_^
a, Vì AB=AC nên t.giác ABC cân tại A
=> góc ABC=g.ACB
Xét t.giác BEC và t.g CDB, ta có:
góc BEC=g.BDC=90
Cạnh BC chung
g.ABC=g.ACB(c/m trên)
=>tg BEC=tg CDB(cạnh huyền-góc nhọn)
=>BD=EC
b,Theo c/m câu a =>BE=DC(hai cạnh tg ứng)
Lại có:
góc BEO=CDO=90
g.EOB=g.DOC ( đối đỉnh)
=>g.EBO=g.ODC
Xét tg BEO và tg CDO, ta có
g,EBO=g.ODC (c/m trên)
BE=DC(c/m trên)
g.BEO=g.CDO=90
=>tg BEO=tg CDO(g.c.g)
=>EO=DO
( c/m OD=OC có j đó sai nha bn ,xem lại đề ik)
c,Theo c/m câu b,=>BO=OC
Xét tg BOA và tg COA, ta có
BA=CA(gt)
OA cạnh chung
BO=OC(c/m trên)
=>tg BAO=tg COA(c.c.c)
=>g.BAO=g.CAO
=> OA là tia phân giác của góc BAC
A B C E D O
a) Xét \(\Delta ABD,\Delta ACE\) có :
\(\widehat{ADB}=\widehat{AEC}\left(=90^{^O}\right)\)
\(AB=AC\) (gt)
\(\widehat{A}:Chung\)
=> \(\Delta ABD=\Delta ACE\left(g.c.g\right)\)
=> \(BD=CE\) (2 cạnh tương ứng)
b) Ta có : \(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\AE=AD\left(\Delta ABD=\Delta ACE\right)\end{matrix}\right.\)
Lại có ; \(\left\{{}\begin{matrix}E\in AB\\D\in AC\end{matrix}\right.\left(gt\right)\Rightarrow\left\{{}\begin{matrix}AB=AE+BE\\AC=AD+DC\end{matrix}\right.\)
Suy ra : \(BE=DC\left(AB-AE=AC-DC\right)\)
Xét \(\Delta BOE,\Delta COD\) có :
\(\widehat{BOE}=\widehat{COD}\) (đối đỉnh)
\(BE=CD\left(cmt\right)\)
\(\widehat{BEO}=\widehat{CDO}\left(=90^o\right)\)
=> \(\Delta BOE=\Delta COD\left(g.c.g\right)\)
c) Xét \(\Delta ABO,\Delta ACO\) có :
\(AB=AC\left(gt\right)\)
\(AO:Chung\)
\(BO=OC\) (từ \(\Delta BOE=\Delta COD\left(cmt\right)\)
=> \(\Delta ABO=\Delta ACO\left(c.c.c\right)\)
\(\Rightarrow\widehat{BAO}=\widehat{CAO}\) (2 góc tương ứng)
Do đó : AO là tia phân giác của \(\widehat{BAC}\)
d) Xét \(\Delta AED\) cân tại A (AE = AD) có :
\(\widehat{AED}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)
Xét \(\Delta ABC\) cân tại A (AB=AC) có :
\(\widehat{ABC}=\dfrac{180^{^O}-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}\left(=\dfrac{180^{^O}-\widehat{A}}{2}\right)\)
Mà thấy : 2 góc này ở vị trí đồng vị
Do đó : \(DE//BC\left(đpcm\right)\)
Bai 4:(tu ke hinh nha!)
*Truong hop BC la canh huyen;
tam giac ABC vuong tai A .Ap dung dinh ly pytago ta co:
BC2=AB2+AC2
102=62+AC2
100=36+AC2
AC2=100-36
AC2=64
AC=8
*Truong hop AC la canh huyen
AC2=AB2+BC2
AC2=62+102
AC2=36+100
AC2=136
AC=CAN CUA 136
Vay AC bang :can 136:8
Bài 1 ( Hình tự kẻ )
a) Xét tam giác ABD và tam giác HBD, ta có:
góc BAD = góc BHD = 90 độ
BD là cạnh chung
góc ABD = góc HBD ( BD là đường phân giác của góc ABH )
=> tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )
b) Xét tam giác ADE và tam giác HDC, ta có:
góc EAD = góc CHD = 90 độ
DA = DH ( vì tam giác ABD = tam giác HBD )
góc ADE = góc HDC ( đối đỉnh )
=> tam giác ADE = tam giác HDC ( cạnh góc vuông - góc nhọn )
=> góc AED = góc HCD ( 2 góc tương ứng )
** Mk chỉ có thể giúp dc đến đó thôi
Câu hỏi của Zero Two - Toán lớp 7 - Học toán với OnlineMath