Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ - AB = AC ( gt )
ABM = ACM vì { - AM chung
(c.c.c) - MB = MC ( m là trung điểm )
b/ AB // DC k phải AB // BC
T/g ABM = t/g DCM ( c.g.c)
AM = DM ( gt )
Góc AMB = DMC ( đđ )
BM = CM ( gt )
Có ABM = DCM ( t/g ABM = t/g DCM )
Lại ở vị trí slt
=> AB // DC
c/
AB = AC ( gt )
=> ABC cân tại A
Có AM là trung tuyến ( m là trug điểm )
=> AM là đường cao ABC
=> AM vuông góc BC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét tứ giác ABMH có
I là trung điểm của AM
I là trung điểm của BH
Do đó: ABMH là hình bình hành
Suy ra; AH//BM
hay AH//BC
Em tham khảo tại đây nhé.
Câu hỏi của Cả cuộc đời này tôi sẽ mãi yêu một người - Toán lớp 7 - Học toán với OnlineMath
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
A B C M E D
CM: a) Xét t/giác ABM và t/giác ACM
có AB = AC (gt)
BM = MC (gt)
AM : chung
=> t/giác ABM = t/giác ACM (c.c.c)
b) Ta có: t/giác ABM = t/giác ACM (cmt)
=> góc AMB = góc AMC (hai góc tương ứng)
Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)
=> \(2\widehat{AMB}=180^0\)
=> \(\widehat{AMB}=180^0:2=90^0\)
=> AM \(\perp\)BC ( Đpcm)
c) Xét t/giác AMD và t/giác CED
có AD = CD (gt)
góc ADM = góc EDC (đối đỉnh)
DM = DE (gt)
=> t/giác AMD = t/giác CED (c.g.c)
=> góc MAD = góc DCE (hai góc tương ứng)
Mà góc MAD và góc DCE ở vị trí so le trong
=> AM // EC (Đpcm)
d) Ta có : t/giác MAD = t/giác DCE (cmt)
=> AM = CE (hai cạnh tương ứng)
Do AM // EC (cmt) => góc AMC + góc MCE = 1800 (trong cùng phía)
=> góc MCE = 1800 - góc AMC = 1800 - 900 = 900 (vì góc AMB = góc AMC mà góc AMB = 900 => góc AMC = 900)
Xét t/giác AMC và t/giác MCE
có AM = CE (cmt)
góc AMC = góc MCE (cmt)
MC : chung
=> t/giác AMC = t/giác MCE (c.g.c)
=> ME = AC (hai cạnh tương ứng)
mà MD = DE = ME/2
hay AC/2 = MD (Đpcm)