Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Xét ΔADF và ΔCDE có
DA=DC
\(\widehat{ADF}=\widehat{CDE}\)
DF=DE
Do đó: ΔADF=ΔCDE
Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do dó: AECF là hình bình hành
Suy ra: AF//EC
a) Xét \(\Delta AMB\)và \(\Delta AMC\)có :
AM ( cạnh chung )
AB = AC ( gt )
MB = MC ( gt )
Suy ra : \(\Delta AMB\)= \(\Delta AMC\)( c.c.c )
\(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}\)( hai cạnh tương ứng ) mà \(\widehat{AMB}+\widehat{AMC}=180^o\)
\(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\frac{\widehat{BMC}}{2}=90^o\)\(\Rightarrow\)AM \(\perp\)BC
b) Xét \(\Delta ADF\)và \(\Delta CDE\)có :
DE = DF ( gt )
\(\widehat{EDC}=\widehat{FDA}\)( hai góc đối đỉnh )
DA = DC ( gt )
Suy ra : \(\Delta ADF\)= \(\Delta CDE\)( c.g.c )
\(\Rightarrow\widehat{FAD}=\widehat{ECD}\)( hai góc tương ứng )
Mà hai góc này ở vị trí so le trong nên AF // EC
c) gọi H là giao điểm của BD và AE
Xét \(\Delta AHD\)vuông tại H có : \(\widehat{HAD}+\widehat{ADH}=90^o\)( 1 )
Xét \(\Delta BAD\) vuông tại A có : \(\widehat{ABD}+\widehat{BDA}=90^o\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\widehat{HAD}=\widehat{ABD}\)
Xét \(\Delta BAD\)và \(\Delta ACG\)có :
\(\widehat{DBA}=\widehat{GAC}\)( cmt )
AB = AC ( gt )
\(\widehat{BAD}=\widehat{ACG}\)( = \(90^o\))
Suy ra : \(\Delta BAD\)= \(\Delta ACG\)( g.c.g )
\(\Rightarrow AD=CG\)( hai cạnh tương ứng )
Mà \(AD=DC=\frac{AC}{2}\)
\(\Rightarrow CG=\frac{AC}{2}=\frac{AB}{2}\)( vì AB = AC )
\(\Rightarrow AB=2CG\)
a) Xét tam giác ABI và tam gaic ACI có:
AB = AC
IB= IC ( vì I là trg điểm BC )
AI: cạnh chung
=> tam giác ABI = tam giác ACI
b) Ta có: tam giác ABI = tam giác ACI (theo câu a) => \(\widehat{BIA}=\widehat{AIC}\)( hai góc tương ứng) hay \(\widehat{BID}=\widehat{DIC}\)
Xét tam giác BID và tam giác DIC có:
DI: cạnh chung
\(\widehat{BID}=\widehat{DIC}\) ( cmt )
IB = IC ( gt)
=> tam giác BID = tam giác CID ( c.g.c)
=> DB= DC ( 2 cạnh tương ứng)
c)