K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2020

A B C M

tam giác ABC cân tại A (AB = AC) có đường cao AM (AM vuông góc với BC tại M)

=> AM đồng thời là đường cao, đồng thời là đường trung tuyến của tam giác ABC cân tại A

=> M là trung điểm BC.

13 tháng 1 2023

hình thì bạn tự vẽ nha !

a) xét ΔAMB và ΔAMC, ta có : 

AB = AC (gt)

MB = MC (vì M là trung điểm của cạnh BC)

AM là cạnh chung

⇒ ΔAMB = ΔAMC (c.c.c)

b) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

ta có : \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

⇒ AM vuông góc với BC

c) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

xét ΔAHM và ΔAKM, ta có : 

AM là cạnh chung

\(\widehat{HAM}=\widehat{KAM}\) (cmt)

⇒ ΔAHM = ΔAKM (cạnh góc vuông và góc nhọn kề)

⇒ HA = KA (2 cạnh tương ứng)

HB không thể nào bằng AC được nha, có thể đề sai 

d) vì HA = KA nên ⇒ ΔHAK là tam giác cân

trong ΔAHK, ta có : \(\widehat{AHK}=\left(180^0-\widehat{A}\right)\div2\)   (1)

trong ΔABC, ta có : \(\widehat{ABC}=\left(180^0-\widehat{A}\right)\div2\)    (2)

từ (1) và (2) ta suy ra \(\widehat{AHK}=\widehat{ABC}\), mà 2 góc này ở vị trí đồng vị, => HK // BC

16 tháng 1 2023

A B C M GT ∆ABC(AB = AC) M là trung điểm của BC H MH∟AB tại H MK∟AC tại∟K KL a)∆AMB = ∆AMC b)AM∟BC c)HA = KA; HB = KC d)HK song song với BC K X X

Chứng minh:

a) Xét hai ∆AMB và ∆AMC có:

       AB = AC (GT)

       MB = MB (M là trung điểm của BC)

       AM là cạnh chung

Vậy ∆AMB = ∆AMC(c.c.c)

b) Có ∆AMB = ∆AMC(theo a)

⇒ Góc AMB = Góc AMC(2 góc tương ứng)

mà góc AMB + AMC = 180° (2 góc kề bù)

⇒ Góc AMB = Góc AMC = 90°

⇒ AM ∟ BC

c) ΔABC có:

       AB = AC(GT)

⇒ ΔABC cân tại A

⇒ Góc B = Góc C

Có MHAB tại H ⇒ Góc MHB = 90°

Có MKAC tại K ⇒ Góc MKC = 90°

Xét hai ΔBHM và ΔCKM có:

       Góc B = Góc C(ΔABC cân tại A)

       MB = MC(M là trung điểm của BC)

       Góc MHB = Góc MKC = 90°

Vậy ΔBHM = ΔCKM(g.c.g)

⇒ HB = KC(2 cạnh tương ứng)

Có HB + HA = AB

⇒ HA = AB - HB

Có KC + KA = AC

⇒ KA = AC - KC

mà AB = AC(GT)

       HB = KC(2 cạnh tương ứng)

⇒ HA = KA (2 cạnh tương ứng)

 

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

8 tháng 12 2021

A B C M

\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:

\(AB=AC\) (giả thiết)

\(AM\) là cạnh chung

\(BM=CM\) (giả thiết)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)

\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)

\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)

Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))

\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)

\(\Rightarrow AM\perp BC\) tại \(M\)

16 tháng 12 2021

b: Ta có: ΔBAC cân tại A

mà AM là đường cao

nên M là trung điểm của BC

18 tháng 12 2022

loading...  

26 tháng 8 2021

a) Xét ΔAMB và ΔAMC có:

AB=AC(gt)

\(\widehat{BAM}=\widehat{CAM}\)(AM là tia phân giác góc A)

AM chung

=> ΔAMB=ΔAMC(c.g.c)

b) Ta có: ΔAMB=ΔAMC(cmt)

=> \(\widehat{AMB}=\widehat{AMC}\)

Mà 2 góc này là 2 góc kề bù

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\)

=> AM⊥BC

c)  Ta có: ΔAMB=ΔAMC(cmt)

=> BM=MC( 2 cạnh tương ứng)

=> M là trung điểm BC

26 tháng 8 2021

cảm ơn bạn

 

27 tháng 7 2021

Bài làm hoàn chỉnh đây nhé bn

undefined

27 tháng 7 2021

Xem lại đề câu c nhé bn

undefined

28 tháng 2 2021

a) xét ΔABM và ΔACM có

góc B = góc C 

AB = AC ( ΔABC cân tại A )

BM=CM ( tính chất các đường của Δ cân từ đỉnh )

=> ΔABM = ΔACM  

b) xét ΔBME và ΔCMF có

góc B bằng góc C 

BM=CM

=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )

=> FM = EM 

=> ΔEMF cân tại M

c) gọi giao của EF và AM là O 

ta có BE = CF => AE=AF

=> ΔAEF cân tại A 

ta có AM là tia phân giác của góc A 

mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A 

ta lại có ΔAEF cân tại A 

suy ra AO vuông góc với EF

suy ra AM vuông góc với EF

xét ΔAEF và ΔABC có 

EF và BC đều cùng vuông góc với AM => EF // BC 

 

 

a) Xét ΔABM và ΔACM có 

AB=AC(ΔABC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

b) Xét ΔEMB vuông tại E và ΔFMC vuông tại F có 

BM=CM(M là trung điểm của BC)

\(\widehat{EBM}=\widehat{FCM}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔEMB=ΔFMC(Cạnh huyền-góc nhọn)

Suy ra: ME=MF(hai cạnh tương ứng)

Xét ΔEMF có ME=MF(cmt)

nên ΔEMF cân tại M(Định nghĩa tam giác cân)

23 tháng 2 2021

Nếu tam giác ABC mà vuông tại A thì 2 tam giác ABM và ACM không thể bằng nhau đc

Mk nghĩ bn nên xem lại đề bài.