Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình thì bạn tự vẽ nha !
a) xét ΔAMB và ΔAMC, ta có :
AB = AC (gt)
MB = MC (vì M là trung điểm của cạnh BC)
AM là cạnh chung
⇒ ΔAMB = ΔAMC (c.c.c)
b) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
ta có : \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
⇒ AM vuông góc với BC
c) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
xét ΔAHM và ΔAKM, ta có :
AM là cạnh chung
\(\widehat{HAM}=\widehat{KAM}\) (cmt)
⇒ ΔAHM = ΔAKM (cạnh góc vuông và góc nhọn kề)
⇒ HA = KA (2 cạnh tương ứng)
HB không thể nào bằng AC được nha, có thể đề sai
d) vì HA = KA nên ⇒ ΔHAK là tam giác cân
trong ΔAHK, ta có : \(\widehat{AHK}=\left(180^0-\widehat{A}\right)\div2\) (1)
trong ΔABC, ta có : \(\widehat{ABC}=\left(180^0-\widehat{A}\right)\div2\) (2)
từ (1) và (2) ta suy ra \(\widehat{AHK}=\widehat{ABC}\), mà 2 góc này ở vị trí đồng vị, => HK // BC
Chứng minh:
a) Xét hai ∆AMB và ∆AMC có:
AB = AC (GT)
MB = MB (M là trung điểm của BC)
AM là cạnh chung
Vậy ∆AMB = ∆AMC(c.c.c)
b) Có ∆AMB = ∆AMC(theo a)
⇒ Góc AMB = Góc AMC(2 góc tương ứng)
mà góc AMB + AMC = 180° (2 góc kề bù)
⇒ Góc AMB = Góc AMC = 90°
⇒ AM ∟ BC
c) ΔABC có:
AB = AC(GT)
⇒ ΔABC cân tại A
⇒ Góc B = Góc C
Có MH∟AB tại H ⇒ Góc MHB = 90°
Có MK∟AC tại K ⇒ Góc MKC = 90°
Xét hai ΔBHM và ΔCKM có:
Góc B = Góc C(ΔABC cân tại A)
MB = MC(M là trung điểm của BC)
Góc MHB = Góc MKC = 90°
Vậy ΔBHM = ΔCKM(g.c.g)
⇒ HB = KC(2 cạnh tương ứng)
Có HB + HA = AB
⇒ HA = AB - HB
Có KC + KA = AC
⇒ KA = AC - KC
mà AB = AC(GT)
HB = KC(2 cạnh tương ứng)
⇒ HA = KA (2 cạnh tương ứng)
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(AB=AC\) (giả thiết)
\(AM\) là cạnh chung
\(BM=CM\) (giả thiết)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)
\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)
\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)
Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))
\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)
\(\Rightarrow AM\perp BC\) tại \(M\)
b: Ta có: ΔBAC cân tại A
mà AM là đường cao
nên M là trung điểm của BC
a) Xét ΔAMB và ΔAMC có:
AB=AC(gt)
\(\widehat{BAM}=\widehat{CAM}\)(AM là tia phân giác góc A)
AM chung
=> ΔAMB=ΔAMC(c.g.c)
b) Ta có: ΔAMB=ΔAMC(cmt)
=> \(\widehat{AMB}=\widehat{AMC}\)
Mà 2 góc này là 2 góc kề bù
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\)
=> AM⊥BC
c) Ta có: ΔAMB=ΔAMC(cmt)
=> BM=MC( 2 cạnh tương ứng)
=> M là trung điểm BC
a) xét ΔABM và ΔACM có
góc B = góc C
AB = AC ( ΔABC cân tại A )
BM=CM ( tính chất các đường của Δ cân từ đỉnh )
=> ΔABM = ΔACM
b) xét ΔBME và ΔCMF có
góc B bằng góc C
BM=CM
=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )
=> FM = EM
=> ΔEMF cân tại M
c) gọi giao của EF và AM là O
ta có BE = CF => AE=AF
=> ΔAEF cân tại A
ta có AM là tia phân giác của góc A
mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A
ta lại có ΔAEF cân tại A
suy ra AO vuông góc với EF
suy ra AM vuông góc với EF
xét ΔAEF và ΔABC có
EF và BC đều cùng vuông góc với AM => EF // BC
a) Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
b) Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
BM=CM(M là trung điểm của BC)
\(\widehat{EBM}=\widehat{FCM}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔEMB=ΔFMC(Cạnh huyền-góc nhọn)
Suy ra: ME=MF(hai cạnh tương ứng)
Xét ΔEMF có ME=MF(cmt)
nên ΔEMF cân tại M(Định nghĩa tam giác cân)
Nếu tam giác ABC mà vuông tại A thì 2 tam giác ABM và ACM không thể bằng nhau đc
Mk nghĩ bn nên xem lại đề bài.
tam giác ABC cân tại A (AB = AC) có đường cao AM (AM vuông góc với BC tại M)
=> AM đồng thời là đường cao, đồng thời là đường trung tuyến của tam giác ABC cân tại A
=> M là trung điểm BC.