Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Vì AH là tia p/g của \(\widehat{BAC}\) (gt)
=> \(\widehat{BAH}=\widehat{CAH}=\frac{60^o}{2}=30^o\)
Vậy \(\widehat{BAH}=30^o\)
b/ Xét ΔAHB và ΔAHK có:
AH: Cạnh chung
\(\widehat{BAH}=\widehat{CAH}\) (AH là tia p/g của \(\widehat{BAC}\) (gt))
AB = AK (gt)
=> ΔAHB = ΔAHK(c.g.c)(đpcm)
c/ Vì ΔAHB = ΔAHK (ý b)
=> \(\widehat{AHB}=\widehat{AHK}\) (2 góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHK}=180^o\) (kề bù)
=> \(\widehat{AHB}=\widehat{AHK}=\frac{180^o}{2}=90^o\)
=> AH \(\perp\) BK (đpcm)
d/ Xét ΔAHN và ΔAHQ có:
\(\widehat{AHN}=\widehat{AHQ}=90^o\left(gt\right)\)
AH: Cạnh chung
\(\widehat{BAH}=\widehat{CAH}\) (AH là p/g của \(\widehat{BAC}\) (gt))
=> ΔAHN = ΔAHQ(g.c.g)
=> HN = HQ(2 cạnh tương ứng) (1)
mà \(\widehat{AHN}=\widehat{AHQ}=90^o\left(gt\right)\Rightarrow AH\perp QN\) (2)
Từ (1) và (2)
=> AH là đường trung trực của QN (đpcm)
a: Xét ΔMHC và ΔMKC có
CH=CK
\(\widehat{HCM}=\widehat{KCM}\)
CM chung
Do đó: ΔMHC=ΔMKC
Suy ra: MH=MK
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
Chẳng hiểu tại sao Mình chẳng thấy gì ở bài làm của cô Chi mà mình vẫn cứ k đúng ???
a, Gọi D vuông góc với phân giác của BAC tại điểm O
Xét △ADH và △ADK cùng vuông tại D
Có: HAD = KAD (gt)
=> △ADH = △ADK (cgv-gnk)
=> AH = AK (2 cạnh tương ứng)
=> △AHK cân tại A
b, Vẽ BI // CK (I HK)
=> AKH = BIH (2 góc đồng vị)
Mà AHK = AKH (△AHK cân tại A)
=> BIH = AHK
=> BIH = BHI
=> △BHI cân tại B
=> BH = BI
Xét △OBI và △OCK
Có: BOI = COK (2 góc đối đỉnh)
OB = OC (gt)
OBI = OCK (BI // CK)
=> △OBI = △OCK (g.c.g)
=> BI = CK (2 cạnh tương ứng)
Mà BH = BI (cmt)
=> BH = CK
c, Ta có: AH = AB + BH , AK = AC - KC
=> AH + AK = AB + BH + AC - KC
=> AH + AH = (AB + AC) + (BH - KC) (AK = AH)
=> 2AH = AB + AC (BH = KC => BH - KC = 0)
=> AH = (AB + AC) : 2 = (9 + 12) : 2 = 10,5 (cm)
=> BH = AH - AB = 10,5 - 9 = 1,5 (cm)