Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

#)Giải :
(Bạn tự vẽ hình :P)
a) Xét ΔABC có:
IB = IA ( I là tia đối của AB)
BM = CM (M là tia đối của BC)
=> IM là đương trung bình của ΔABC
=> IM // AC và IM = 1/2AC
mà AK = 1/2AC (K là tia đối của AC) và K thuộc AC
=> IM // AK và IM = AK
=> Tứ giác AIMK là hình bình hành có góc A = 90o
=> AIMK là hình chữ nhật
Có : IA = IB = AB/2= 6/2= 3 (I là tia đối của AB)
AK = CK = AC/2= 8/2= 4 (K là tia đối của AC)
Diện tích hình chữ nhật AIMK :
SAIMK = AI.AK = 3.4 = 12 cm2
b) Áp dụng Py-ta-go vào Δ vuông ABC có:
BC2 = AB2 + AC2
hay BC2 = 62 + 82 = 100
=> BC = 10
Xét Δ vuông ABC có :
AM là đường trung tuyến ứng với BC
=> AM = 1/2BC = 1/2.10
=> AM = 5
Vậy AM = 5cm
c) Có IM = AK (cạnh đối hình chữ nhật AIMK)
mà JI = JM = 1/2IM và SA = SK = 1/2AK
=> JI = JM = SA = SK (1)
Có IA = MK (cạnh đối hình chữ nhật AIMK )
mà PI = PA = 1/2IA và HM = HK = 1212MK
=> PI = PA = HM = HM (2)
Có góc A = góc I = góc M = góc K (3)
Từ (1) (2) và (3) suy ra :
ΔPIJ = ΔPAS = ΔHKS = ΔHKJ (c-g-c)
=> JP = JH = SP = SH (các cạnh tương ứng )
=> Tứ giác JPSH là hình thoi
=> PH vuông góc với JS (tính chất đường chéo hình thoi)

a: I là trung điểm của AB
=>\(AI=\frac{AB}{2}=\frac62=3\left(\operatorname{cm}\right)\)
K là trung điểm của AC
=>\(AK=\frac{AC}{2}=\frac82=4\left(\operatorname{cm}\right)\)
Xét ΔCAB có
K,M lần lượt là trung điểm của CA,CB
=>KM là đường trung bình của ΔCAB
=>KM//AB và \(KM=\frac{AB}{2}\)
ta có: KM//AB
=>KM//AI
ta có: \(KM=\frac{AB}{2}\)
\(AI=\frac{AB}{2}\)
Do đó: KM=AI
Xét tứ giác AIMK có
KM//AI
KM=AI
Do đó: AIMK là hình bình hành
Hình bình hành AIMK có \(\hat{IAK}=90^0\)
nên AIMK là hình chữ nhật
=>Diện tích hình chữ nhật AIMK là:
\(S=AI\cdot AK=3\cdot4=12\left(\operatorname{cm}^2\right)\)
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=36+64=100=10^2\)
=>BC=10(cm)
ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=\frac{BC}{2}=\frac{10}{2}=5\left(\operatorname{cm}\right)\)
c: Xét ΔKMI có
H,J lần lượt là trung điểm của MK,MI
=>HJ là đường trung bình của ΔKMI
=>HJ//KI và \(HJ=\frac{KI}{2}\)
Xét ΔAIK có
P,S lân lượt là trung điểm của AI,AK
=>PS là đường trung bình của ΔAIK
=>\(PS=\frac{KI}{2}\) và PS//KI
ta có: HJ//KI
PS//KI
Do đó: HJ//PS
Ta có: \(HJ=\frac{KI}{2}\)
\(PS=\frac{KI}{2}\)
Do đó: HJ=PS
Xét ΔKAM có
H,S lần lượt là trung điểm của KM,KA
=>HS là đường trung bình của ΔAKM
=>\(HS=\frac{AM}{2}\)
mà AM=KI(AIMK là hình chữ nhật)
nên \(HS=\frac{KI}{2}\)
=>HS=HJ
Xét tứ giác HSPJ có
HJ//PS
HJ=PS
Do đó: HSPJ là hình bình hành
Hình bình hành HSPJ có HS=HJ
nên HSPJ là hình thoi
=>HP⊥SJ

a) tam giác abc vuông tại a, suy ra trung tuyến am ứng với cạnh huyền bc bằng 1/2 bc và = 5cm
b) tứ giác adme có â = 90o; d^ = 90o; ê = 90o => adme là hình chữ nhật
HT

a)
ta có G là trọng tâm của tam giác ABC.
\(\hept{\begin{cases}\Rightarrow BH=GH=GD\\\Rightarrow EG=GK=KC\end{cases}}\)
hay G là trung điểm của EK và HD.
tứ giác EDKH có 2 đường chéo cắt nhau tại trung điểm mỗi đường
do đó tứ giác EDKH là hình bình hành.
b) để hình bình hành EDKH là hình chữ nhật thì EK=HD
⇒BD=EC⇒ΔABCcân
vậy để hình bình hành EDKH là hình chữ nhật thì tam giác ABC cân
c) vẽ đường cao AI vuông góc với BC.
khi đó AI cũng là đường trung tuyến.
\(\Rightarrow AG=\frac{2}{3}AI\)
ta có :\(\hept{\begin{cases}BE=AE\\AD=DC\end{cases}}\) nên ED là đường trung bình của tam giác ABC.
⇒\(\hept{\begin{cases}ED//BC\\2ED=BC\end{cases}}\)
vì ED//BC và AI⊥BC nên ED⊥AI
đồng thời EH⊥ED nên EH//AI.
ta có: \(\hept{\begin{cases}EH//AI\\BE=EA\end{cases}}\)\(\Rightarrow AH=\frac{AG}{2}\)
hay \(EH=\frac{\frac{2}{3}AI}{2}=\frac{1}{3}AI\Leftrightarrow3EH=AI\)
\(S\Delta ABC=\frac{AI.BC}{2}=\frac{3EH.2ED}{2}=3EH.ED\)=\(3S_{EDHK}\)
vậy\(\frac{S_{EDHK}}{S_{\Delta ABC}}=\frac{1}{3}\)
CHÚC BẠN HỌC TỐT

Bài 2 :
A B C D M E
a, Xét tam giác ABC ta có :
D là trung điểm AB
M là trung điểm CB
=)) DM là đường TB tam giác ABC
=)) DM // AC hay DM // AE (1)
Ta có : E là trung điểm AC
M là trung điểm BA
=)) EM là đường TB tam giác ABC
=)) EM // AB hay EM // AD (2)
Từ 1;2 =)) Tứ giác ADME là hình bình hành
b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM
=)) AM đồng thời là tia phân giác của ^A
Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)
=)) Tứ giác ADME là hình thoi
c, Nếu tam giác ABC vuông tại A => ^A = 90^0
Xét hình bình hành ADME có ^A =90^0
=)) Tứ giác ADME là hình chữ nhật