K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Cho tam giác có góc A = 60 độ và AB<AC . Trên cạnh AC lấy điểm D sao cho AD=AB. Tia phân giác của góc A cắt BC ở Ea.Chứng minh tam giác ABE = tam giác ADEb.AE cắt BD tại I .Chứng minh I là trung điểm của BDc.Trên tia AI lấy điểm H sao cho IA=IH. Chứng minh AB song song với HD d.Tính số đo góc ABD2.Cho tam giác ABC vuông tại A có góc B = 2 Góc C a.Tính số đo của góc B và C của Tam giác ABCb.Kẻ AH vuông góc với BC (...
Đọc tiếp

1.Cho tam giác có góc A = 60 độ và AB<AC . Trên cạnh AC lấy điểm D sao cho AD=AB. Tia phân giác của góc A cắt BC ở E

a.Chứng minh tam giác ABE = tam giác ADE

b.AE cắt BD tại I .Chứng minh I là trung điểm của BD

c.Trên tia AI lấy điểm H sao cho IA=IH. Chứng minh AB song song với HD 

d.Tính số đo góc ABD

2.Cho tam giác ABC vuông tại A có góc B = 2 Góc C 

a.Tính số đo của góc B và C của Tam giác ABC

b.Kẻ AH vuông góc với BC ( H thuộc BC) .Trên tia HC lấy D sao cho H là trung điểm của BD .Chứng minh Tam giác ABH= tam giác AHD

c.Chứng minh AD= Cd

d.TRên tia đối của HA lấy K sao cho HK= HA. Chứng minh KD là đường trung trực của AC.

3.Cho tam giác ABC có góc A= 90 độ ( AB<AC) kẻ AH vuông góc với BC ,. Trên Bc lấy I sao cho HI=HB. Trên tia đối của HA lấy K sao cho HK=HA

a.chứng minh tam giác ABH=tam giác KIH

b.Chứng minh AB song song với KI

c.Vẽ IE vuông góc với AC tại E . Chứng minh K, I,E thẳng hàng 

Giải giúp mình với các bạn . Mình cần rất gấp . Mai phải nộp rồi

Thanks nhiều nghen

1
9 tháng 5 2021

xét tam giác ABE và tam giác ADE 

AE chung 

góc BAE = góc DAE(AE la tia phân giác của góc E)

AB = AD ( gt)

=> tam giác ABE = tam giac DAE  ( c.g.c)

b) xét tam giác  ABI và tam giác ADI

AI chung 

góc BAE =  góc DAE 

tam giác  ABI=tam giác ADI

=> BI = DI ( 2 cạnh t/ứ )

=> I là trung điểm của BD

a: Xét ΔBAI vuông tại A và ΔBHI vuông tại H có 

BI chung

\(\widehat{ABI}=\widehat{HBI}\)

Do đó: ΔBAI=ΔBHI

Suy ra: IA=IH

b: Xét ΔAIK vuông tại A và ΔHIC vuông tại H có

IA=IH

\(\widehat{AIK}=\widehat{HIC}\)

Do đó: ΔAIK=ΔHIC

Suy ra: IK=IC

hay ΔIKC cân tại I

27 tháng 1 2022

c. ta có BH = AB ( cmt ) => AB = 6cm

áp dụng định lí pitago ta có

\(BC^2=AB^2+AC^2\)

\(10^2-6^2=AC^2\)

AC=\(\sqrt{64}=8cm\)

a: Xét ΔABI vuông tại B và ΔAHI vuông tại H có

AI chung

\(\widehat{BAI}=\widehat{HAI}\)

Do đó: ΔABI=ΔAHI

b: Ta có: ΔABI=ΔAHI

nên AB=AH

hay ΔABH cân tại A

mà \(\widehat{BAH}=60^0\)

nên ΔABH đều

c: Xét ΔBIK vuông tại B và ΔHIC vuông tại H có

IB=IH

\(\widehat{BIK}=\widehat{HIC}\)

Do đó: ΔBIK=ΔHIC

Suy ra: BK=HC

27 tháng 2 2022

Cảm ơn bạn nhiều 👍❤️

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0

a: Xét ΔABI vuông tại A và ΔHBI vuông tại H có

BI chung

\(\widehat{ABI}=\widehat{HBI}\)

Do đó:ΔABI=ΔHBI

b: Xét ΔAIK vuông tại A và ΔHIC vuông tại H có

IA=IH

\(\widehat{AIK}=\widehat{HIC}\)

Do đó; ΔAIK=ΔHIC

Suy ra: AK=HC

mà BA=BH

nên BK=BC

=>ΔBKC cân tại B