K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2015

c) Tam giác AMB cân tại M => góc ABM = góc BAM (1)

Vì MK//AB ( cùng vuông góc AB) => góc ABM = góc AMK (2)

Từ (1) và (2) => góc ABM = góc AMK => tg vuông AHB đồng dạng tg vuông AKM

d) Tg AHB đd tg AKM => AH/AK = AB/AM => AH.AM = AK.AB (3)

Mặt khác vì tg AMC cân tại M có MK là đường cao => MK là đg trung tuyến => AK = CK; AM = BM (4)

Từ (3) và (4) => AH.BM = CK.AB 

23 tháng 3 2018

c, Xét tam giác HAC và MBC có : 

\(\widehat{AHC}=\widehat{BMC}=90^O\)

Góc BCM chung 

=> tam giác HAC đồng dạng với MBC

23 tháng 3 2018

giúp mình nốt câu e đc k???

5 tháng 5 2020

hình tự vẽ nhé 

5 tháng 5 2020

ok banj

29 tháng 4 2018

a) bn lm đc rồi nên mk bỏ qua nhé

b)  Áp dụng định lý Putago vào tam giác vuông ABC ta có

        \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=21^2+28^2=1225\)

\(\Leftrightarrow\)\(BC=\sqrt{1225}=35\)cm

\(\Delta ABC\)vuông tại  \(A\)có  \(AM\)là trung tuyến

\(\Rightarrow\)\(AM=\frac{1}{2}BC=17,5\)cm

\(\Delta HBA~\Delta ABC\) (câu a)

\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AB}{BC}\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=\frac{21.28}{35}=16,8\)cm

c)  \(\Delta BAC\)có    \(EM\)\(//\)\(AC\) (cùng vuông góc với AB)

\(\Rightarrow\)\(\frac{AE}{AB}=\frac{CM}{CB}\) (1)

   \(\Delta CAB\) có   \(MF\)\(//\)\(AB\) (cùng vuông góc với AC)

\(\Rightarrow\) \(\frac{AF}{AC}=\frac{BM}{BC}\) (2)

   \(\Delta ABC\)có  \(AM\)là trung tuyến

\(\Rightarrow\)\(MB=MC\)(3)

Từ (1), (2) và (3)  suy ra:

   \(\frac{AE}{AB}=\frac{AF}{AC}\)

\(\Rightarrow\)\(EF\)\(//\)\(BC\)  (định lý Ta-lét đảo)

26 tháng 4 2021

cảm ơn ạ

 

20 tháng 1 2020

A B C D M 5cm 12cm

a, Áp dụng định lí Piatago trong \(\Delta ABC\) vuông tại \(A\) có:

\(\Rightarrow BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2=5^2+12^2\)

\(\Rightarrow BC=\sqrt{169}\)

\(\Rightarrow BC=13cm\)

Ta có: \(AM\) là đường trung tuyến ứng với cạnh huyền \(BC\) nên:

\(\Rightarrow AM=\frac{1}{2}BC=\frac{1}{2}.13=6,5cm\)

b, Xét tứ giác \(ABCD\) có:

\(M\) là trung điểm của \(AD\)

\(M\) là trung điểm của \(BC\)

\(\Rightarrow ABCD\) là HBH

\(\Rightarrow AD=BC\)

c, Giả sử \(AB=AC\)

\(\Rightarrow\Delta ABC\)vuông cân ( Từ đầu \(\Delta ABC\) vuông rồi)

Xét HBH \(ABCD\) có:

\(\widehat{A}=90^0\)

\(\Rightarrow ABCD\) là HCN

Xét hình chữ nhật \(ABCD\) có:

\(AB=AC\left(gt\right)\)

\(\Rightarrow ABCD\) là hình vuông.

Để \(ABCD\) là hình vuông thì \(\Delta ABC\)  vuông tại \(A\) cần thêm điều kiện \(AB=AC\) 

20 tháng 1 2020

M A B C D

a ) Xét \(\Delta ABC\)vuông tại A (gt) có :

\(BC^2=AB^2+AC^2\)( định lý Py - ta - go )
\(BC^2=5^2+12^2\)

\(BC^2=25+144\)

\(BC^2=169\)

\(\Rightarrow BC=13cm\)( vì BC > 0 )

+ Vì AM là đường trung tuyến ứng với cạnh huyền BC trong tam giác vuông ABC ( gt)

\(\Rightarrow AM=\frac{1}{2}BC\)( tính chất tam giác vuông cân )

\(\Rightarrow AM=\frac{1}{2}.13\)

\(\Rightarrow AM=6,5\left(cm\right)\)

b ) Vì AM là đường trung tuyến  của \(\Delta ABC\left(gt\right)\)

\(\Rightarrow M\)là trung điểm của BC (1) 

+ Vì D đối xứng với A qua M (gt)

\(\Rightarrow M\)là trung điểm của AD (2)

Từ (1) và (2) \(\Rightarrow\) 2 dường chéo BC và AD cắt nahu tại trung điểm M của mỗi đường 

\(\Rightarrow\)Tứ giác \(ABCD\) là hình bình hành ( dấu hiệu nhận biết hình bình hành )

Mà \(\widehat{BAC}=90^0\left(gt\right)\)

\(\Rightarrow\)Hình bình hành ABCD là hình chữ nhật ( dấu hiệu nhận biết hình chữ nhật )

\(\Rightarrow AD=BC\)( tính chất hình chữ nhật )

c ) Theo câu b ta có \(ABCD\)là hình chữ nhật 

Để hình chữ nhật \(ABCD\) là hình vuông

\(\Leftrightarrow AB=AC\)

\(\Rightarrow\Delta ABC\)cân tại A

Mà \(\Delta ABC\)vuông tại A (gt)

\(\Rightarrow\Delta ABC\)vuông cân tại A .

Vậy \(\Delta ABC\)vuông cân tại A thì hình chữ hật ABCD là hình vuông 

Chức bạn học tốt !!!