K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2020

Vì AB<AC nên D sẽ nằm ngoài tam giác ABC (ngoài cạnh AB) còn E nằm trong ABC (trên cạnh AC)

Qua C vẽ đường vuông góc với tia phân giác góc A cắt AB tại F.

Xét tam giác ACF có tia phân giác góc A đồng thời là đường cao---> Tam giác ACF cân tại A=> AF=AC=9cm

=> AB+BF=9=>BF=9-AB=9-5=4cm

Xét tam giác BCF có M trung điểm BC, CF//MD (cùng vuông góc với tia phân giác góc A)

=> D trung điểm BF => BD=1/2.BF=1/2.4=2cm

AD=AB+BD=5+2=7cm

a: Xét ΔABF có

AE vừa là đường cao, vừa là phân giác

nen ΔABF cân tại A

b: Xét tứ giác HFKD có

HF//DK

HF=DK

Do đó: HFKD là hình bình hành

=>DH//KF và DH=KF

c: Xét ΔABC co AB<AC

nên góc C<góc ABC

Xét ΔDAC có góc DAC=góc DCA

nên ΔDAC cân tại D

=>M là trung điểm của AC

26 tháng 4 2021

cảm ơn bạn nhévui

1 tháng 3 2015

a)-Gọi chân đường thẳng vuông góc kẻ từ trung điểm D tới phân gác góc BAC là G

=>AG vuông góc với DG => AG vuông góc với EF

-Xét tam giác AFE có AG vừa là phân giác vừa là đường cao => tam giác AFE là tam giác cân và cân tại A(đpcm)

=>góc AFE = góc AEF 

-BM //AC => AFE = BME (đồng vị) => BME = AEF => tam giác BME là tam giác cân và cân tại B(đpcm)

 

b) Xét tam giác CFD và tam giác MBD:

+) FDC = MDB (đối đỉnh)

+) CD=BD (D là trung điểm BC)

+) FCD = DBM ( so le trong - BM //AC)

=> tam giác CFD = tam giác MBD

=> CF = BM ( hai cạnh tương ứng)

- tam giác BME cân tại B (cmt) => BM=BE

=> CF=BE

 

c)-DO là đường trung trực của cạnh BC => BO=CO

-tam giác AFE cân tại A => AG vừa là đường cao vừa là đường trung trực từ đỉnh tới cạnh đáy FE. O nằm trên FE => FO=EO

-Xét tam giác OCF và tam giác OBE:

+) BO=CO (cmt)

+) FO=EO (cmt)

+) CF=BE (cmt)

=> tam giác OCF=tam giác OBE (đpcm)

8 tháng 5 2016

Gọi H là giao điểm của CF vs AB, K là trung điểm AH =&gt; DK&#x2F;&#x2F;GH =&gt; KH&#x2F;BH = DG&#x2F;BG (1) 
Mặt khác dễ thấy tg BCH cân tại B =&gt; BH = CB và theo tính chất phân giác ta có: 
AE&#x2F;CE = AB&#x2F;CB = (AH + BH)&#x2F;BH = AH&#x2F;BH + 1 &lt;=&gt; AH&#x2F;BH = AE&#x2F;CE - 1 = (AE - CE)&#x2F;CE = ((AD + DE) - (CD - DE))&#x2F;CE = 2DE&#x2F;CE (vì AD = CD) 
&lt;=&gt; 2KH&#x2F;BH = 2DE&#x2F;CE &lt;=&gt; KH&#x2F;BH = DE&#x2F;CE (2) 
Từ (1) và (2) =&gt; DE&#x2F;CE = DG&#x2F;BG =&gt; EG&#x2F;&#x2F;BC mà DF&#x2F;&#x2F;AB (do D; F là trung điểm của AC;CH) =&gt; DF đi qua trung điểm của BC =&gt; DF đi qua trung điểm EG (Ta lét(