Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi GE,FD cắt đường tròn (O) lần thứ hai tại H,I.
Ta thấy F nằm trên trung trực BD => \(\Delta\)BDF cân tại F. Mà \(\Delta\)BDF ~ \(\Delta\)IDA (g.g) nên \(\Delta\)IDA cân tại A
Hay AI = AD. Tương tự ta có AH = AE. Do AD = AE nên AH = AD = AE = AI => A cách đều 4 điểm H,D,E,I
=> Tứ giác DEIH nội tiếp. Vậy thì ^DEH = ^DIH = ^HIF = ^HGF => DE // FG (2 góc đồng vị bằng nhau) (đpcm).
d) Tính BE.BA + CD.CA
Chứng minh tương tự câu b, CD.CA = CI.CB
Từ đó BE.BA + CD.CA = BI.BC + CI.CB
= (BI + CI).BC = BC.BC = B C 2 = 16 2 = 256
a: góc BEH+góc BKH=180 độ
=>BEHK nội tiếp
=>góc EBH=góc EKH
góc BKA=góc BDA=90 độ
=>ABKD nội tiếp
=>góc EBH=góc AKD=góc EKH
=>KA là phân giác của góc EKD
b: góc AIO=góc AJO=góc AKO=90 độ
=>I,J,K,A,O cùng thuộc đường tròn đường kính OA
sđ cung AI=sđ cung AJ
=>góc AKI=góc AJI
=>góc AKE+góc IKE=góc AKD+góc DKJ
=>góc IKE=góc DKJ
c: