K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2019

Do \(C\in AC\Rightarrow C\left(a;2-a\right)\)

Do M là trung điểm BC nên \(\left\{{}\begin{matrix}x_B=2x_M-x_C=-2-a\\y_B=2y_M-y_C=a\end{matrix}\right.\) \(\Rightarrow B\left(-2-a;a\right)\)

Do \(B\in AB\Rightarrow2x_B+6y_B+3=0\)

\(\Rightarrow2\left(-2-a\right)+6a+3=0\Rightarrow4a=1\Rightarrow a=\frac{1}{4}\) \(\Rightarrow C\left(\frac{1}{4};\frac{7}{4}\right)\)

\(\Rightarrow\overrightarrow{MC}=\left(\frac{5}{4};\frac{3}{4}\right)\)

\(\Rightarrow\) chọn \(\overrightarrow{n_{BC}}=\left(3;-5\right)\) là 1 vtpt của BC

\(\Rightarrow\) Phương trình BC:

\(3\left(x+1\right)-5\left(y-1\right)=0\Leftrightarrow3x-5y+8=0\)

4 tháng 2 2021

Hình như không đủ dữ kiện

4 tháng 2 2021

Bài trên là phương trình AB nha, ko phải AC

16 tháng 4 2021

Giả sử tam giác ABC có M là trung điểm BC, AB thuộc \(d_1\), AC thuộc \(d_2\).

Gọi \(C=\left(m;2-m\right)\in\left(d_2\right)\Rightarrow B=\left(-2-m;m\right)\) 

Mà \(B\in\left(d_1\right)\Rightarrow2\left(-2-m\right)+6m+3=0\)

\(\Leftrightarrow m=\dfrac{1}{4}\)

\(\Rightarrow C=\left(\dfrac{1}{4};\dfrac{7}{4}\right)\)

Phương trình đường thẳng BC: \(\dfrac{x+1}{-1-\dfrac{1}{4}}=\dfrac{y-1}{1-\dfrac{7}{4}}\Leftrightarrow x-3y+4=0\)

NV
18 tháng 2 2020

Do \(B\in AB\Rightarrow B\left(b;\frac{-2b-3}{6}\right)\)

\(C\in AC\Rightarrow C\left(2-c;c\right)\)

Do M là trung điểm BC nên: \(\left\{{}\begin{matrix}x_B+x_C=2x_M\\y_B+y_C=2y_M\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}b+2-c=-2\\\frac{-2b-3}{6}+c=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b-c=-4\\-2b+6c=15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-\frac{9}{4}\\c=\frac{7}{4}\end{matrix}\right.\)

\(\Rightarrow B\left(-\frac{9}{4};\frac{1}{4}\right);C\left(\frac{1}{4};\frac{7}{4}\right)\)

\(\Rightarrow\overrightarrow{BC}=\left(\frac{5}{2};\frac{3}{2}\right)=\frac{1}{2}\left(5;3\right)\)

\(\Rightarrow\) Phương trình BC: \(\left\{{}\begin{matrix}x=-1+5t\\y=1+3t\end{matrix}\right.\)

NM
31 tháng 3 2022

ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)

Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)

Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC

khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)

Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)

NV
21 tháng 3 2021

\(cosB=\dfrac{\left|1.2+\left(-7\right).1\right|}{\sqrt{1^2+\left(-7\right)^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)

Gọi vtpt của AC có tọa độ \(\left(a;b\right)\)

\(\Rightarrow cosC=cosB=\dfrac{1}{\sqrt{10}}=\dfrac{\left|2a+b\right|}{\sqrt{a^2+b^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)

\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{a^2+b^2}\)

\(\Leftrightarrow2\left(2a+b\right)^2=a^2+b^2\)

\(\Leftrightarrow7a^2+8ab+b^2=0\Leftrightarrow\left(a+b\right)\left(7a+b\right)=0\)

Chọn \(a=1\Rightarrow\left[{}\begin{matrix}b=-1\\b=-7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;-7\right)\end{matrix}\right.\)

(Trường hợp \(\left(a;b\right)=\left(1-;7\right)\) loại do khi đó AC song song AB, vô lý)

\(\Rightarrow\) Phương trình AC: \(1\left(x-4\right)-1\left(y-0\right)=0\)

20 tháng 2 2022

cho em hỏi vtpt là gì vậy ?

 

 

NV
5 tháng 3 2023

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y-2=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow A\left(3;1\right)\)

\(\left\{{}\begin{matrix}x_A+x_B+x_C=3x_G\\y_A+y_B+y_C=3y_G\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B+x_C=6\\y_B+y_C=5\end{matrix}\right.\) (1)

B thuộc AB nên: \(x_B-y_B=2\Rightarrow x_B=y_B+2\)

C thuộc AC nên: \(x_C+2y_C-5=0\Rightarrow x_C=-2y_C+5\)

Thế vào (1) \(\Rightarrow\left\{{}\begin{matrix}y_B+2-2y_C+5=6\\y_B+y_C=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_B=3\Rightarrow x_B=5\\y_C=2\Rightarrow x_C=1\end{matrix}\right.\)

Phương trình BC: \(\dfrac{x-5}{1-5}=\dfrac{y-3}{2-3}\Leftrightarrow x-4y+7=0\)

30 tháng 5 2017

Hỏi đáp Toán

30 tháng 5 2017

8 tháng 4 2016

A B C P(1,2;5,6)

Điểm P có tọa độ \(\left(\frac{5}{6};\frac{28}{5}\right)\). Đặt \(\widehat{ABC}=\alpha\). Do tam giác ABC cân tại A nên \(\alpha\in\left(0;\frac{\pi}{2}\right)\) do đó \(\alpha=\left(\widehat{AB,BC}\right)=\left(\widehat{BC,CA}\right)\)

và \(\cos\alpha=\frac{\left|4.1+\left(-1\right).\left(-2\right)\right|}{\sqrt{4^2+\left(-1\right)^2}.\sqrt{1^2+\left(-2\right)^2}}=\frac{6}{\sqrt{5.17}}\)

Do đó bài toán trở thành viết phương trình đường thẳng đi qua \(P\left(\frac{6}{5};\frac{28}{7}\right)\) không song song với AB, tạo với BC góc \(\alpha\) mà \(\cos\alpha=\frac{6}{\sqrt{5.17}}\) (1)

Đường thẳng AC cần tìm có vecto pháp tuyến \(\overrightarrow{n}=\left(a;b\right)\) với \(a^2+b^2\ne0\) và \(a\ne-4b\) (do AC không cùng phương với AB). Từ đó và (1) suy ra :

\(\frac{6}{\sqrt{5.17}}=\frac{\left|a-2b\right|}{\sqrt{5}.\sqrt{a^2+b^2}}\Leftrightarrow6\sqrt{a^2+b^2}=\sqrt{17}.\left|a-2b\right|\)

                              \(\Leftrightarrow19a^2+68ab-32b^2=0\)

                              \(\Leftrightarrow\left(a+4b\right)\left(19a-8b\right)=0\)

                              \(\Leftrightarrow19a=8b\) (do \(a\ne-4b\) (2)

Từ (2) và do \(a^2+b^2\ne0\), chọn a=40, b=95 được phương trình đường thẳng AC cần tìm là \(40\left(x-\frac{6}{5}\right)+95\left(y-\frac{28}{5}\right)=0\) hay \(8x+19y-116=0\)

10 tháng 4 2021

Đường thẳng AB nhận \(\overrightarrow{n}=\left(1;2\right)\) làm vecto pháp tuyến

AB đi qua A (1; -1) nên nó có phương trình là

x - 1 + 2 (y + 1) = 0 hay x + 2y + 1 = 0

Gọi M là trung điểm của AB ⇒ M ∈ Δ, tọa độ của M có dạng

M (t ; 2t + 1) với t là số thực và \(\overrightarrow{AM}=\left(t-1;2t+2\right)\)

⇒ AM ⊥ Δ 

⇒ \(\overrightarrow{AM}.\overrightarrow{n}=0\)

⇒ t + 1 + 2. (2t + 2) = 0

⇒ t = -1

Vậy M (- 1; - 1)

M là trung điểm của AB => Tọa độ B

Làm tương tự như thế sẽ suy ra tọa độ C