Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:`AB^2+AC^2=21^2+28^2=1225`
Mà `BC^2=1225`
Áp udnjg định lý ppytago đảo vào tam giác ABC có:`AB^2+AC^2=BC^2=1225`
`=>` tam giác ABC vuông
b)Vì BAC vuông tại A
`=>hat{BAC}=90^o`
`=>hat{HAB}=hat{HCA}=90^o-hat{HAC}`
Xét tam giác HBA và tam giác HAC có"
`hat{HAB}=hat{HCA}`(CMT)
`hat{BHA}=hat{HAC}=90^o`
`=>` tam giác HBA đồng dạng với tam giác HAC(gg)
c)Xét tam giác ACH và tam giác BAC ta có:
`hat{AHC}=hat{BAC}=90^o`
`hat{ACB}` chung
`=>DeltaACH~DeltaBAC(gg)`
`=>(AC)/(BH)=(BC)/(AC)`
`=>AC^2=BH.BC`.
d)Đường phân góc gì nhỉ?
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
b: ΔHAB vuông tại H có HM vuông góc AB
nên MH^2=MA*MB
a/ Xét tg HBA và tg ABC, có:
góc BHA = góc BAC = 90 độ
góc B chung
Suyra: tg HBA đồng dạng với tg ABC (g-g)
b/ Ta có tg ABC vuông tại A:
\(BC^2=AC^2+AB^2\)
\(BC^2=8^2+6^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\)(cm)
Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)
\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)
\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)
a) Do tam giác ABC vuông tại A ta có
BC.BC = AB.AB + AC.AC
=>BC.BC = 36x36 +48x48 =3600
=>BC= 60(cm)
Diện tích của tam giác ABC vuông tại A là
S = 1/2 .AB.AC
Mặt khác AH là đường cao diện tích S còn có thể bằng
S = 1/2 . AH. BC
=> AB.AC = AH.BC
=> AH = AB.AC /BC = 36x48/60 =28.8 (cm)
b) Chứng minh tam giác đồng dạng ta chỉ cần chứng minh các góc bằng nhau là được HBA đồng dạng HAC
Lời giải:
a) Ta thấy: \(21^2+28^2=35^2\)
\(\Leftrightarrow AB^2+AC^2=BC^2\)
Áp dụng định lí Py-ta-go
\(\Rightarrow\Delta ABC\) vuông tại $A$
Xét \(\Delta AHB\) và \(\Delta CAB\) có:
\(\widehat{H}=\widehat{A}=90^o\)
\(\widehat{B}\) chung
\(\Rightarrow\Delta AHB\sim\Delta CAB\left(g-g\right)\)
\(\Rightarrow\dfrac{AH}{CA}=\dfrac{AB}{CB}\\
\Rightarrow\dfrac{AH}{28}=\dfrac{21}{35}\\
\Rightarrow AH=16,8cm\)
a: Vì BC^2=AB^2+AC^2
nên ΔABC vuông tại A
\(AH=\dfrac{21\cdot28}{35}=16.8\left(cm\right)\)
b: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó; ΔHBA đồng dạng với ΔABC
c: Xét ΔABC có AM là phân giác
nên MB/AB=MC/AC
=>MB/3=MC/4=(MB+MC)/(3+4)=35/7=5
=>MB=15cm; MC=20cm
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
c: Ta có: ΔHBA\(\sim\)ΔHAC
nên HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
d: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
hay BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)
Do đó: BD=15/7(cm); CD=20/7(cm)
a) Ta có: AB^2 + AC^2 = 21^2 + 28^2 = 35^2 = BC^2
Vậy Tam giác ABC vuông tại A (đl Pytago đảo)
b) Ta có: Góc B + góc C = 90 độ (cmt câu a)
Góc HAC + góc C = 90 độ (Tam giác HAC vuông tại H)
=> Góc B = góc HAC
Mà Góc AHB= Góc AHC = 90 độ (Đường cao AH)
Vậy Tam giác HBA ~ tam giác HAC (góc - góc)
c)
Theo tính chất đường phân giác trong tam giác:
MB/ AB = MC / AC
<=> MB. AC = MC . AB
<=> MB . AC = (35- MB) . AB
<=> 35AB= MB.(AB+AC)
<=> MB = 35AB/(AB+AC) = 35.21/(21+28) = 15 cm
=> MC= 35 - 15 = 20 cm
Vậy MB = 15 cm, MC 20 cm
(Bạn tự vẽ hình và ghi giả thuyết kết luận nhé!)
Bạn ơi vẽ hình làm sao ạ