K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

kho ua

8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE ....
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do ABAC,HEAB,HFACAB⊥AC,HE⊥AB,HF⊥AC

ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o

AEHF→◊AEHF là hình chữ nhật

AH=EF

Mấy câu khác chưa học !

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Sửa đề: ΔABC cân tại A

a:ΔABC cân tại A

mà AD là đường phân giác

nên AD là đường cao

=>AD vuông góc BC

b: Xét ΔAFI và ΔAEI có

AF=AE
góc FAI=góc EAI

AI chung

=>ΔAFI=ΔAEI

=>góc AFI=góc AEI

=>FI vuông góc AB

c: Xét ΔABC có

BE,AD là đường cao

BE cắt AD tại I

=>I là trực tâm

=>CI vuông góc AB

=>C,I,F thẳng hàng

28 tháng 2 2017

  A;áp dụng pitago ta có : BC2 = 202+152=625

       suy ra : BC= \(\sqrt{625}\) =25

 Xét tam giác :\(\Delta abc\)và  \(\Delta ahc\)ta có :

          \(\widehat{c}\) ( góc chung)

     \(\widehat{ahc}\)= \(\widehat{bac}\) = 90 độ

   vậy \(\Delta ABC\)đồng dạng với  \(\Delta AHC\)( g-g)

                     suy ra  : \(\frac{15}{25}\)=  \(\frac{AH}{20}\)  

                     vậy AH= 12 cm \(\left(ĐPCM\right)\)

     B)  ta có :áp dụng pitago ta có:  BH^2 = 15^2-12^2=81 cm

                  vậy BH =\(\sqrt{81}\)=\(9\)cm

      áp dụng đường phân giác trong tam giác ta lại có

                \(\frac{DH}{DB}\)= \(\frac{15}{12}\)  

         \(_{_{ }\Leftrightarrow}\)\(\frac{9-DB}{DB}\) = \(\frac{15}{12}\)

       \(\Leftrightarrow\)    \(\left(9-DB\right)\)\(_{\times}\) \(12\)=  \(15\times DB\)

       \(\Leftrightarrow\)    108 -12DB=15DB

         \(\Leftrightarrow\)  108 = 15DB+12DB

            \(\Rightarrow\)DB=4 cm \(\left(ĐPCM\right)\)

                  DH= BH - BD= 9 - 4=5 \(\left(ĐPCM\right)\)

          phần C mình gửi sau nhé bạn xin lỗi nhé ^_^

1 tháng 3 2017

                                                                                 \(GIẢI\)\(TIEP\)

ta có : \(\widehat{HCF}\)= \(\widehat{CHA}\) =\(90\)độ ( giả thiết)

    mà hai góc này lại ở vị trí sole trong suy ra :HA song song với CF

          suy ra: \(\widehat{CFH}\)= \(\widehat{AHF}\) ( HAI GÓC SOLE TRONG )

                     \(\widehat{FCA}\) =\(\widehat{HAC}\)( HAI GÓC SOLE TRONG ) 

       TỪ hai điều trên suy ra : \(\widehat{CMF}\)=  \(\widehat{HMA}\)         

          mà hai góc này lại ở vị trí đối đỉnh của CA và HF suy ra:

    HMF thẳng hàng