Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC vuông tại A có sin B=AC/BC=4/5
nên \(\widehat{B}\simeq53^0\)
a) Xét ΔABC vuông tại A có
\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{20}{25}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq37^0\)
Xét tam giác ABC vuông tại A áp dụng Py-ta-go ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)
Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{15}{25}=\dfrac{3}{5}\)
\(\Rightarrow\widehat{B}\approx36^o52'\)
\(\Rightarrow\widehat{C}=180^o-90^o-36^o52'\approx53^o7'\)
a) Ta có 252=152+202 hay BC2=AB2+AC2
=> ▲ABC vuông tại A
b) Xét ▲ABC vuông tại A có
SinB = \(\frac{AC}{BC}=\frac{20}{25}=\frac{4}{5}\)
TanC = \(\frac{AB}{AC}=\frac{15}{20}=\frac{3}{4}\)
=> SinB + TanC = \(\frac{4}{5}+\frac{3}{4}=\frac{31}{20}\)
c) I là trung điểm AC => AI = 10cm.
=> BI2 = 102+152= 325 => BI = \(5\sqrt{13}\)
Xét ▲ABI có TanI = \(\frac{3}{2}\)=> góc BIA = 56'18'
=> BIC = 180 - 56'18' = 123 độ 41 phút.
ta có
AB2+AC2=152+202=625
và BC2=252=625
=> tam giác ABC vuông tại A
ta lại có:
sin B=\(\frac{AC}{BC}=\frac{20}{25}=\frac{4}{5}\)
=> góc B\(\approx53^o8'\)
=> góc C= 90o-53o8'=36o52'