Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì △ ABD và △ ABC có chung đường cao kẻ từ đỉnh A nên:
Vậy: S A B D = 3/8.S
S A D C = S A B C - S A B D = S - 3/8.S = 8/8.S - 3/8.S = 5/8.S
Vì DE // AB và AD là đường phân giác góc A nên AE = DE
Ta có:
Vậy:
Ta có:
a) ta có AD là pân giác của góc A=> DB/DC=AB/AC=12/20=3/5 =>DB=[28/(3+5)].3=10,5( tổng tỷ)=>CD=28-10,5=17,5 ta có ED/AB=CD/CB=>ED/12=17,5/28=> ED=7,5 b) ta có diện tích ABC/ADB=CD/CB=17,5/28=> S/ADB=17,5/28=> diện tích ADB=S.10,5/28 ta lại có diện tích ADC/ABC=DC/BC=17,5/28=> diện tích ADC= (17,5/28).S TA CÓ diên tích ADE/ADC=AE/AC=DE/AC=7,5/20 (DE//AB=> góc DAE=góc ADE) => diện tích ADE=diện tích ADC .7,5/20 =S.26,25/112 diện tích DECthì bạn lấy diện tích ADC-ADE=S.43,75/112
a: BC=căn 12^2+16^2=20cm
Xét ΔABC có AD là phân giác
nên BD/DC=AB/AC=3/4
=>BD/3=DC/4=(BD+DC)/(3+4)=20/7
=>BD=60/7cm; DC=80/7cm
Xét ΔCAB có ED//AB
nên ED/AB=CD/CB=4/7
=>ED/12=4/7
=>ED=48/7cm
b: S ABC=1/2*12*16=96cm2
BD/BC=3/7
=>S ABD/S ABC=3/7
=>S ABD=288/7cm2
A B C D E
a. ta có \(\hept{\begin{cases}\frac{DB}{DC}=\frac{AB}{AC}=\frac{10}{25}=\frac{2}{5}\\BD+DC=BC=30\end{cases}\Rightarrow\hept{\begin{cases}DB=\frac{60}{7}\\DC=\frac{150}{7}\end{cases}}}\)
mà \(\frac{DE}{AB}=\frac{CD}{CB}=\frac{5}{7}\Rightarrow DE=\frac{50}{7}cm\)
b.ta có \(\frac{S_{ABD}}{S_{ABC}}=\frac{BD}{BC}=\frac{2}{7}\Rightarrow S_{ABD}=\frac{120.2}{7}=\frac{240}{7}cm^2\Rightarrow S_{ACD}=S_{ABC}-S_{ABD}=\frac{600}{7}\)
mà
\(\frac{S_{AED}}{S_{ADC}}=\frac{AE}{AC}=\frac{BD}{BC}=\frac{2}{7}\Rightarrow S_{AED}=\frac{600}{7}\frac{.2}{7}=\frac{1200}{49}cm^2\Rightarrow S_{CDE}=S_{ACD}-S_{AED}=\frac{3000}{49}\)
* Trong △ ABC, ta có:
AD là đường phân giác của ∠ (BAC)
Suy ra: (tính chất tia phân giác)
Suy ra:
Suy ra:
Suy ra:
Vậy DC = BC - DB = 28 - 10,5 = 17,5 (cm)
* Trong △ ABC, ta có: DE // AB
Suy ra: (Hệ quả định lí Ta-lét)
Vậy:
đề bạn sai rồi