Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a thì em sử dụng trường hợp = nhau trong tam giác [c.g.c]
Câu b:
1. chứng minh cho PHAQ là HCN [tứ giác có 3 góc vuông]
2. Từ HCN PHQA => PH=AQ [MÀ PH=PE ->PE=AQ] , PA=HQ[mà HQ=QF -> QF=PA] rồi xét 2 tam giác PAE = QFA[c.g.c]
Hai tam giác bằng nhau => AE=AF mà A thuộc EF => A là trung điểm của EF
A) Xet tam giac abh va tam giac ach
ah=ah (canh chung)
hb=hc vi trung diem
ab=ac vi tam giac abc can tai a
B)xet tam giac aeh vuong tai e va tam giac afh vuong tai f
eah=fah vi tam giac ahb=tam giac ahc
ah=ah canh chung
>> he=hf
C) xet tam giac aef
ae=af vi tam giac aeh=tam giac afh
>>tam giac aef can tai a
ta co
Goc aef=(180-goc aef):2( tam giac aef can taia)
Goc abc=(180-goc bac):2 (tam giac abc can tai a)
goc aef=goc bac( goc chung)
>>goc aef=goc abc
ma goc aef va goc abc nam o vi tri dong vi
>>ef//bc
A B C M H K 1 2
Xét \(\Delta\)BMH và \(\Delta\)CMK có:
Góc BHM = góc CKM = 90 độ ( do BH \(⊥\)AM, CK \(⊥\)AM)
Góc M1 = góc M2 ( đối đỉnh)
BM = CM (M là trung điểm BC)
=> \(\Delta\)BMH = \(\Delta\)CMK (cạnh huyền.góc nhọn)
=> BH = CK (2 cạnh tương ứng) (dpcm)
A B C I K M
a. Xét tam giác BIM và CKM ta có
MB=MC (vì M là trung điểm BC)
góc IMB = góc KMC ( đối đỉnh)
góc BIM = góc CKM (vuông)
=> tam giác BIM =CKM (ch-gn)
=> BI=CK ( hai canh tương ứng ) =>dpcm