Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xin lỗi, mình ghi nhầm, sửa lại yêu cầu:
chứng minh rằng ACB là góc nhọn
A B C D
\(\Delta ABC\)có cạnh AB nhỏ nhất=> AB<AC=> \(\widehat{ACB}\le60^0\le\widehat{ABC}\)
BD là tia đối của BA=>\(\widehat{CBD}\ge60^0\)
Xét \(\Delta DBC:\widehat{CBD}\ge60^0\Rightarrow\widehat{BCD}+\widehat{BDC}\le120^0\)
Mà \(\Delta DBC\)có BD=BC\(\Rightarrow\Delta DBC\)cân tại B\(\Rightarrow\widehat{BCD}=\widehat{BDC}\le120^0:2=60^0\)
Ta lại có \(\widehat{BCD}+\widehat{ACB}\le60^0+60^0=120^0\Rightarrow\widehat{ACD}\le120^0\)
Xét \(\Delta ACD:\widehat{ACD}\le120^0;\widehat{ADC}\le60^0\Rightarrow\widehat{ACD}>\widehat{ADC}\Rightarrow\widehat{DAC}\ge60^0\)
\(\Rightarrow\Delta ABC:\widehat{BAC}\ge60^0;\widehat{ACB}\le60^0\Rightarrow\widehat{ABC}\le60^0\)
Vậy \(\widehat{ABC}\)là góc nhọn (đpcm)