K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
16 tháng 1 2019
a,Xét ABM và ACM
AB=AC , AM chung , BM=MC(Do M là trung điểm của BC)
ABM = ACM
BAM = CAM (1)
Mà AM nằm giữa AB và AC ( Do M nằm giữa B và C) (2)
Từ (1) và (2)
AM là tia phân giác của BAC
16 tháng 1 2019
b,Xét BNC và DNC
NC chung , CB = CD
Góc BCN = DCN
Tam giác:BNC = DNC
Góc BNC = DCN
Mà BNC + DCN = 180
BNC = 90
CN vuông góc với BD
11 tháng 1 2022
a: Xét ΔAHB vuông tại H và ΔDHB vuông tại H có
HB chung
HA=HD
Do đó: ΔAHB=ΔDHB
b: Xét ΔACH vuông tại H và ΔDCH vuông tại H có
HC chung
HA=HD
Do đó: ΔACH=ΔDCH
Suy ra: \(\widehat{ACH}=\widehat{DCH}\)
hay CB là tia phân giác của góc ACD
xin lỗi, mình ghi nhầm, sửa lại yêu cầu:
chứng minh rằng ACB là góc nhọn
A B C D
\(\Delta ABC\)có cạnh AB nhỏ nhất=> AB<AC=> \(\widehat{ACB}\le60^0\le\widehat{ABC}\)
BD là tia đối của BA=>\(\widehat{CBD}\ge60^0\)
Xét \(\Delta DBC:\widehat{CBD}\ge60^0\Rightarrow\widehat{BCD}+\widehat{BDC}\le120^0\)
Mà \(\Delta DBC\)có BD=BC\(\Rightarrow\Delta DBC\)cân tại B\(\Rightarrow\widehat{BCD}=\widehat{BDC}\le120^0:2=60^0\)
Ta lại có \(\widehat{BCD}+\widehat{ACB}\le60^0+60^0=120^0\Rightarrow\widehat{ACD}\le120^0\)
Xét \(\Delta ACD:\widehat{ACD}\le120^0;\widehat{ADC}\le60^0\Rightarrow\widehat{ACD}>\widehat{ADC}\Rightarrow\widehat{DAC}\ge60^0\)
\(\Rightarrow\Delta ABC:\widehat{BAC}\ge60^0;\widehat{ACB}\le60^0\Rightarrow\widehat{ABC}\le60^0\)
Vậy \(\widehat{ABC}\)là góc nhọn (đpcm)