Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét t.giác DBE và t.giác DBA có:
BD cạnh chung
\(\widehat{EBD}\)=\(\widehat{ABD}\)(gt)
BA=BE(gt)
=> t.giác DBE=t.giác DBA(c.g.c)
=> DA=DE(2 cạnh tương ứng)
b, vì \(\widehat{BAF}\)và \(\widehat{BEC}\)là 2 góc bẹt = 180 độ mà \(\widehat{BAD}\)=\(\widehat{BED}\)=> \(\widehat{DAF}\)=\(\widehat{DEC}\)
xét t.giác ADF và t.giác EDC có:
DA=DE(theo câu a)
\(\widehat{ADF}\)=\(\widehat{EDC}\)
\(\widehat{DAF}\)=\(\widehat{DEC}\)(cmt)
=> t.giác ADF=t.giác EDC(g.c.g)
c, vì t.giác ADF=t.giác EDC(câu b) => DF=DC=> t.giác DFC cân tại D
ta có: BA=BE mà AF=EC=> BF=BC
=> t.giác BFC cân tại B
A B C D E F
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: AD=ED
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
c: Ta có: ΔADF=ΔEDC
nên DF=DC và AF=EC
Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BC=BF
hay B nằm trên đường trung trực của CF(1)
Ta có: DF=DC
nên D nằm trên đường trung trực của CF(2)
Từ (1) và (2) suy ra BD\(\perp\)CF
Xin lỗi mk ko biết vẽ hình trên máy
a) Xét tam giác ABD và tan giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD la phân giác góc B )
góc A = góc E ( = 90 )
=> Tam giác ABD = tam giác EBD ( cạnh huyền- góc nhọn )
=> AD = DE
Chúc bạn hc tốt
a)xet tam giac abd va tam giac aed co
ab=ae
ad la canh chunggoc bad = goc ead
=>tam giác abd = ead
b)gọi i là giao điểm của ad và be
xét tam giác abi và tam giác aei có :
ab=ae
ad là cạnh chung
goc bai = góc eai
=> tam giác abi= tâm giác aei
=>ib=ie =>ad là đường trung trực của be
cho mk 3 đi mk giải tiếp cho, bài nay mk vừa mới kiểm tra
mk giải tiếp nè
theo câu a,b=>góc dbf= góc dec (kề bù do góc abd= aed)
xét tam giác bfd và ecd có
góc dbf= góc dec
bd=ed
bdf=edc
=> tam giác dbf= tam giác ecd
k cho mk đi.mk hứa mk tl hết cho mà
a) Xét tam giác ABD và tam giác AED có
AB=AE
BAD=DAE( vì AD là phân giác của BAC)
Cạnh AD chung
=> tam giác ABD= tam giác AED( c.g.c)
=>DB=DE
b) Có tam giác ABD= tam giác AED
=> ABD=AED
=>DBK=DEC( kề bù với 2 góc bằng nhau)
Xét tam giác BDK và tam giác EDC
BD=DE
BDK=EDC ( 2 góc đối đỉnh)
DBK=DEC
=> tam giác BDK= tam giác EDC ( g.c.g)
c) Tam giác BDK=tam giác EDC
=>DBK=DEC
Có DBK>C( DBK là góc ngoài tam giác ABC)
=>DEC>C
=>DC>DE
Mà DE=DE
=>DC>DB
a,Xét tam giác ABD và tam giác EBD có: ABD=EBD (DB là tia phân giác của ABE)
DB chung
AB=BE(gt)
nên ta được đpcm
b, theo a ta có: tam giác ABD= tam giác EBD
nên BAC=BED
nên FAD=DEC(cùng bù 2 góc bằng nhau)
Xét tam giác ADF và tam giác EDC có: ADF=EDC(2 góc đối đỉnh)
AD=DE(theo a)
DAF=DEC(cmt)
nên ta được đpcm
c, ta có BD là phân giác của BAC nên
\(\frac{AB}{AD}=\frac{BC}{DC}\Leftrightarrow\frac{AB}{BC}=\frac{AD}{DC}\)
Mà AB<CB (gt)
nên AD<CD hay AD<AC