Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
a/ Xét tam giác DBC và tam giác EBC có:
BC: cạnh chung
\(\widehat{B}\)=\(\widehat{C}\)(vì tam giác ABC cân có AB = AC)
BD = CE (GT)
=> tam giác DBC = tam giác EBC (c.g.c)
=> BE = CD (2 cạnh tương ứng)
b/ Ta có: \(\widehat{BDC}\)=\(\widehat{CEB}\) (vì tam giác DBC = tam giác EBC) (1)
Ta có: tam giác ABC cân => \(\widehat{B}\)=\(\widehat{C}\)
Mà \(\widehat{EBC}\)=\(\widehat{DCB}\) (vì tam giác DBC = tam giác EBC)
nên \(\widehat{DBK}\)=\(\widehat{ECK}\) (2)
Ta có: BD = CE (GT) (3)
Từ (1),(2),(3) => tam giác KBD = tam giác KCE (g.c.g)
c/ Xét tam giác ABK và tam giác ACK có:
AB = AC (GT)
AK: cạnh chung
Ta có: KD = KE (vì tam giác KBD = tam giác KCE)
Mà BE = CD (câu a)
nên BK = CK
Vậy tam giác ABK = tam giác ACK (c.c.c)
=> \(\widehat{BAK}\)=\(\widehat{CAK}\) (2 góc tương ứng)
=> AK là phân giác \(\widehat{DAE}\) (đpcm)
d/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
=> AM cũng là phân giác góc \(\widehat{DAE}\)
Ta có: AK và AM đều là phân giác của \(\widehat{DAE}\)
=> AM trùng AK
hay A,K,M thẳng hàng.
Ta có hình vẽ:
Xét Δ ABE và Δ ACD có:
AB = AC (gt)
A là góc chung
AE = AD (gt)
Do đó, Δ ABE = Δ ACD (c.g.c)
=> ABE = ACD (2 góc tương ứng)
và AEB = ADC (2 góc tương ứng)
Mà AEB + BEC = 180o (kề bù)
ADC + CDB = 180o (kề bù)
nên BEC = CDB
Có: AB = AC (gt)
AD = AE (gt)
=> AB - AD = AC - AE
=> BD = CE
Xét Δ KBD và Δ KCE có:
KBD = KCE (cmt)
BD = CE (cmt)
KDB = KEC (cmt)
Do đó, Δ KBD = Δ KCE (đpcm)
Ta có hình vẽ:
Xét tam giác ABE và tam giác ACD có:
A: góc chung
AB = AC (GT)
AD = AE (GT)
=> tam giác ABE = tam giác ACD (c.g.c)
=> \(\widehat{B}\)=\(\widehat{C}\) (2 góc tương ứng) (1)
=> \(\widehat{ADC}\)=\(\widehat{AEB}\) (2 góc tương ứng) (*)
Mà \(\widehat{ADC}\)+\(\widehat{CDB}\)=1800 (kề bù) (**)
và \(\widehat{AEB}\)+\(\widehat{BEC}\)=1800 (kề bù) (***)
Từ (*),(**),(***) => \(\widehat{KDB}\)=\(\widehat{KEC}\) (2)
Ta có: AB = AC; AD = AE => DB=EC (3)
Từ (1);(2);(3) => tam giác KBD = tam giác KCE (đpcm)
a) Ta có:
ABC cân tại A nên gócABC= góc ACB và AB=AC
AB=AC (2 cạnh tương ứng)
AD+BD=AE+CE
Mà AD=AE
SUY RA:BD=CE
Xét tam giác bcd và tam giác ceb có
góc ABC= GÓC ACB(CMT)
BD=CE(CMT)
BCchung
do đó tam giác bcd= tam giác ceb(c.g.c)
suy ra BE=CD(đpcm)
Vậy ......
chúc bạn học tốt