Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔAHB=ΔAHC
a: Xét ΔABH và ΔACH có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó: ΔABH=ΔACH
b: Ta có: ΔACB cân tại A
mà AH là đường phân giác
nên AH là đường cao
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: AD=AE
Xét ΔABC có
AD/AB=AE/AC
Do đó: DE//BC
a,xét tam giác ABH và tam giác ACH co
BH=HC(gt)
AH CHUNG
A1=A2=>TAM GIAC ABH=TM GIAC ACH
C,
a: Ta có: ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=10^2-6^2=64\)
=>\(AH=\sqrt{64}=8\left(cm\right)\)
b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của góc BAC
c: Ta có: ΔAHB=ΔAHC
=>BH=CH
Xét ΔBMH vuông tại M và ΔCNH vuông tại N có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBMH=ΔCNH
d: Xét ΔABO vuông tại B và ΔACO vuông tại C có
AO chung
AB=AC
Do đó: ΔABO=ΔACO
=>OB=OC
=>ΔOBC cân tại O
A C H B
a) Xét \(\Delta ABH\) và \(\Delta ACH\)
có: + AB=AC(gt)
+góc BAH=CAH
+AH: cạnh chung.
Vậy \(\Delta ABH=\Delta ACH\left(c.g.c\right)\)
b) Vì \(\Delta ABH=\Delta ACH\left(cmt\right)\)
=> góc BHA=CHA( 2 góc tương ứng)
Mà \(BHA+CHA+180^o\) (kề bù)
Do đó: \(BHA=CHA=\frac{180^o}{2}=90^o\)
Vậy \(AH\perp BC\) tại H
(Bài làm có j ko hiểu bn cứ hỏi mk nhé ^...^ ^_^)