Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AB<AC
mà HB là hình chiếu của BA trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
Xét ΔMBC có HB<HC
mà HB là hình chiếu của MB trên BC
và HC là hình chiếu của MC trên BC
nên MB<MC
b: Ta có: ΔMBH vuông tại H
nên góc HMB<90 độ
=>góc HMN>90 độ
=>NH>NM
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
ĐỀ QUẬN BÌNH TÂN NĂM 2016 - 2017
a) Xét \(\Delta ABH\)và \(\Delta ACH\)ta có:
AH là cạnh chung
AB = AC ( \(\Delta ABC\)cân tại A)
BH = CH ( H là trung điểm của BC)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c-c-c\right)\)
Xét \(\Delta ABC\)cân tại A ta có:
AH là đường trung tuyến ( H là trung điểm của BC)
\(\Rightarrow\)AH là đường cao của \(\Delta ABC\)
\(\Rightarrow AH⊥BC\)tại H.
b) Xét \(\Delta BDH\)vuông tại D và \(\Delta CEH\)vuông tại E ta có:
BH = CH ( H là trung điểm của BC)
\(\widehat{DBH}=\widehat{ECH}\)(\(\Delta ABC\)cân tại A)
\(\Rightarrow\Delta BDH=\Delta CEH\left(ch-gn\right)\)
\(\Rightarrow\)BD = CE ( 2 cạnh tương ứng)
c) Ta có:
AB = AC (\(\Delta ABC\)cân tại A)
BD = CE ( cmt)
\(\Rightarrow AB-BD=AC-CE\)
\(\Rightarrow AD=AE\)
\(\Rightarrow\Delta ADE\)cân tại A
\(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{DAE}}{2}\)
Mà \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)
Nên \(\widehat{ADE}=\widehat{ABC}\)
Mặt khác 2 góc này nằm ở vị trí đồng vị
\(\Rightarrow\)DE // BC.
d) Nối A với I.
Ta có:
\(\hept{\begin{cases}HE=HM+ME\left(M\in HE\right)\\HM=EN\left(gt\right)\end{cases}}\)
\(\Rightarrow HE=EN+ME\)
\(\Rightarrow HE=MN\)
Xét \(\Delta AEN\)vuông tại E ta có:
\(\hept{\begin{cases}AN^2=AE^2+EN^2\left(Pitago\right)\\AE=AD\left(cmt\right)\\EN=HM\left(gt\right)\end{cases}}\)
\(\Rightarrow AN^2=AD^2+HM^2\)
\(\Rightarrow AN^2=AD^2+HI^2-MI^2\)
\(\Rightarrow AN^2=AD^2+HI^2-\left(NI^2-MN^2\right)\)
\(\Rightarrow AN^2=AD^2+HI^2-NI^2+HD^2\)
\(\Rightarrow AN^2=AD^2+HD^2+HI^2-NI^2\)
\(\Rightarrow AN^2=AH^2+HI^2-NI^2\)
\(\Rightarrow AN^2=AI^2-NI^2\)
\(\Rightarrow AI^2=AN^2+NI^2\)
\(\Rightarrow\Delta ANI\)vuông tại N ( Định lý Pitago đảo)
\(\Rightarrow IN⊥AN\)tại N.
A)TA CÓ TAM GIÁC ABC CÂN TẠI A NÊN AB=AC
DO AH VUÔNG GÓC VS BC NÊN HB=HC
SUY RA H LÀ TRUNG ĐIỂM CỦA BC
B)XÉT TAM GIÁC MBH VÀ TAM GIÁC MCH CÓ:
MB=MC(GT)
HB=HC(CMT)
MH LÀ CẠNH CHUNG NÊN HOẶC MH VUÔNG GÓC VS BC
TG MBH=TG MCH (C.C.C)-(CẠNH HUYỀN-CẠNH GÓC VUÔNG)
SUY RA GÓC BMH= GÓC CMH
TA CÓ : BMH+CMH=BMC SUY RA MH LÀ TIA PHÂN GIÁC CỦA GÓC BMC
C)CÒN PHẦN C MỊ CHỊU MỊ CX LƯỜI TÍNH
a: Xét ΔMHC và ΔMKC có
CH=CK
\(\widehat{HCM}=\widehat{KCM}\)
CM chung
Do đó: ΔMHC=ΔMKC
Suy ra: MH=MK
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: Xet ΔMCB có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMCB cân tại M
=>MB=MC
mà MH là đường cao
nên MH là phân giác của góc BMC