K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: BD+DE=BE

CE+ED=CD
mà BD=CE

nên BE=CD

Xét ΔABE và ΔACD có

AB=AC

\(\widehat{ABE}=\widehat{ACD}\)

BE=CD

Do đó: ΔABE=ΔACD

=>\(\widehat{EAB}=\widehat{DAC}\)

b: Ta có: MD+DB=MB

ME+EC+MC

mà MB=MC và DB=EC

nên MD=ME

=>M là trung điểm của DE

Xét ΔAMD và ΔAME có

AM chung

MD=ME

AD=AE

Do đó: ΔAMD=ΔAME

=>\(\widehat{DAM}=\widehat{EAM}\)

=>AM là phân giác của góc DAE

c: Xét ΔADE cân tại A có \(\widehat{DAE}=60^0\)

nên ΔADE đều

=>\(\widehat{ADE}=\widehat{AED}=60^0\)

10 tháng 3 2019

23 tháng 10 2016

Xét tam giác EAB và tam giác DAC có:

AB = AC (gt)

AD = AE (gt)

BE = CD (BE = BD + DE = DE + EC = CD)

=> Tam giác EAB = Tam giác DAC (c.c.c)

M là trung điểm của BC

=> AM là đường trung tuyến của tam giác ABC cân tại A (AB = AC)

=> AM là đường cao của tam giác ABC

hay AM _I_ BC

mà D, E thuộc BC

=> AM _I_ DE

hay AM là đường cao của tam giác ADE cân tại A (AD = AE)

=> AM là tia phân giác của DAE

Tam giác ADE cân tại A (AD = AE)

mà DAE = 600

=> Tam giác ADE là tam giác đều

=> ADE = AED = 600

15 tháng 11 2017

đây là cách làm của lớp 9 rồi,toán lớp 7 chưa học đường cao của tam giác

24 tháng 11 2017

a. Xét tam giác EBA và tam giác DCA

AB=AC

AE=AD

BE=DC

=> tam giác EBA= tam giác DCA(ccc)

b. Theo câu a, tam giác EBA= tam giác DCA(ccc)=> AE=AD; AEB=ADC

Xét tam giác DAM và tam giác EAM có

AD=AE

ADM=AEM

DM=EM

=> tam giác DAM=tam giác EAM(cgc)

=> DAM=EAM => AM là phân giác DAE

c. Nếu DAE=60*

Xét tam giác DAE có AD=AE và DAE=60*=> tam giác DAE là tam giác đều

=> ADE=AED=DAE=60*

6 tháng 3 2016

tích mk rồi mk giải cho

4 tháng 11 2016

a) Tam giác ABC có AB = AC nên tam giác ABC cân tại A

\(\Delta ABE\)\(\Delta ACD\) ( cgc ) ( AB = AC (gt) ; \(\widehat{B}\) =\(\widehat{C}\) ( tam giác ABC cân tại A) ; BE = CD = \(\frac{2}{3}\) BC )

Do đó \(\widehat{BAE}\) = \(\widehat{DAC}\) => tam giác DAE cân tại A

b) tam giác ABC cân tại A có AM là đường trung tuyến => AM là đường cao của tam giác ABC .

Tam giác DAE cân tại A có AM là đường cao ứng với cạnh DE => AM là đường phân giác của tam giác DAE => AM là tia phân giác của \(\widehat{DAE}\) 

c) Tam giác DAE cân tại A có \(\widehat{DAE}\) = 60 => Tam giác DAE là tam giác đều => mỗi góc trong tam giác DAE đều là 600

12 tháng 1 2022

a, Xét tam giác EAB và tam giác DAC có:

AB = AC (gt)

AD = AE (gt)

BE = CD (BE = BD + DE = DE + EC = CD)

=> Tam giác EAB = Tam giác DAC (c.c.c)

b,M là trung điểm của BC

=> AM là đường trung tuyến của tam giác ABC cân tại A (AB = AC)

=> AM là đường cao của tam giác ABC

hay AM _I_ BC

mà D, E thuộc BC

=> AM _I_ DE

hay AM là đường cao của tam giác ADE cân tại A (AD = AE)

=> AM là tia phân giác của DAE

12 tháng 1 2022

A B D M E C

a) Ta có: \(BE=BD+DE=DE+DE=2DE\) ( do \(BD=DE\) )

\(DC=DE+EC=DE+DE=2DE\)( do \(DE=EC\))

\(\Rightarrow\)\(BE=DC\)( vì \(=2DE\) )

Xét \(\Delta ABE\)và \(\Delta ACD\), có:

\(AB=AC\)( giả thiết )

\(AE=AD\)( giả thiết )

\(BE=CD\)( cmt )

\(\Rightarrow\)\(\Delta ABE=\Delta ACD\left(c.c.c\right)\)

\(\Rightarrow\)\(EAB=DAC\)( 2 góc tương ứng )

b) Ta có \(M\)là trung điểm cạnh \(BC\)\(\Rightarrow\)\(AM=CM\)

Và \(BD=EC\)( giả thiết )

Ta có: \(DM=BM-BD\)

\(EM=CM-CE\)

\(\Rightarrow\)\(DM=EM\)( vì cùng bằng hiệu của các cạnh bằng nhau )

Xét \(\Delta ADM\)và \(\Delta AEM\), có:

\(AM\)cạnh chung

\(AD=AE\)( giả thiết )

\(DM=EM\)( cmt )

\(\Rightarrow\)\(\Delta ADM=\Delta AEM\left(c.c.c\right)\)

\(\Rightarrow\)\(DAM=EAM\)( 2 góc tương ứng )

\(\Rightarrow\)\(AM\)chia \(DAE\)thành 2 góc bằng nhau \(\left(DAM=EAM\right)\)

\(\Rightarrow\)\(AM\)phân giác \(DAE\)( đpcm )

c) \(\Delta ADM=\Delta AEM\)

\(\Rightarrow\)\(ADM=AEM\)( 2 góc tương ứng )

Hay \(ADE=AED\)

Áp dụng tính chất tổng 3 góc trong \(\Delta ADE\), ta có:

\(DAE+ADE+AED=180^o\)

\(\Rightarrow\)\(60^o+2ADE=180^o\)

\(\Rightarrow\)\(ADE=60^o\)

\(\Rightarrow\)\(DAE=ADE=AED=60^o\)

a: Xét ΔEAB và ΔDAC có 

EA=DA

AB=AC

EB=DC

Do đó: ΔEAB=ΔDAC

Suy ra: \(\widehat{EAB}=\widehat{DAC}\)