K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH và ΔACH có 

AB=AC

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

Do đó: ΔABH=ΔACH

b: Ta có: ΔABH=ΔACH

nên HB=HC

c: Xét ΔAMK và ΔCMH có 

MA=MC

\(\widehat{AMK}=\widehat{CMH}\)

MK=MH

Do đó: ΔAMK=ΔCMH

a: Xét ΔABH và ΔACH có

AB=AC

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

Do đó: ΔABH=ΔACH

b: Ta có:ΔABC cân tại A

mà AH là đường phân giác

nên H là trung điểm của BC

hay HB=HC

a: Xét ΔABH và ΔACH có 

AB=AC

AH chung

BH=CH

Do đó: ΔABH=ΔACH

b: Ta có: ΔABC cân tại A

mà AH là tia phân giác

nên H là trung điểm của BC

hay HB=HC

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

b) Xét ΔAMD và ΔCMH có 

MA=MC(gt)

\(\widehat{AMD}=\widehat{CMH}\)(hai góc đối đỉnh)

MD=MH(gt)

Do đó: ΔAMD=ΔCMH(c-g-c)

Suy ra: AD=HC(Hai cạnh tương ứng)

c) Ta có: ΔAMD=ΔCMH(cmt)

nên \(\widehat{MAD}=\widehat{MCH}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//HC(Dấu hiệu nhận biết hai đường thẳng song song)

hay AD//HB

Xét tứ giác ABHD có 

AD//BH(cmt)

AD=BH(=HC)

Do đó: ABHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AB//DH(Hai cạnh đối)

18 tháng 2 2016

a) Xét tam giác MHB và tam giác MKC có:

MH=HK(gt)

góc CMK= góc HMB( đối đỉnh)

BM=MC(M là trung điểm của MC)(gt)

=> tam giác MHB= tam giác MKC(c.g.c)

=> góc MHB=góc CKM 

=> MK vuông góc với CK

b) Kẻ CH

Ta có: MH vuông góc với AB(gt)=> KH vuông góc với AB(1)

          AC vuông góc với AB(tam giác ABC vuông tại A)(2)

Từ (1) và (2) => AC // HK(cùng vuông góc với AB)

=> góc ACH= góc CHK( so le trong) 

Xét tam giác ACH vuông tại A và tam giác KHC vuông tại K có:

CH là cạnh chung

góc ACH= góc CHK(chứng minh trên)

=> Tam giác ACH= tam giác KHC( cạnh huyền góc nhọn)

Còn câu c mình chịu

nhớ cho mk nhé

19 tháng 2 2016

a=83

b=563

c=750

19 tháng 1 2018

Câu hỏi của cô gái thất thường - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.