K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔAMC có

AM chung

\(\widehat{BAM}=\widehat{CAM}\)

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔAMB=ΔAMC

=>MB=MC

=>M là trung điểm của BC

c: ta có: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

mà IH\(\perp\)BC

nên AM//IH

=>\(\widehat{BIH}=\widehat{BAM}\)

mà \(\widehat{BAC}=2\cdot\widehat{BAM}\)(AM là phân giác của góc BAC)

nên \(\widehat{BAC}=2\cdot\widehat{BIH}\)

a) Do AB = AC và AM là tia phân giác của góc A nên tam giác AMB cân tại A và tam giác AMC cân tại A.
- Ta có góc BAM = góc CAM (do AM là tia phân giác).
=> Vậy tam giác AMB = tam giác AMC (các cạnh tương ứng bằng nhau).
b) Do tam giác AMB = tam giác AMC nên BM = MC.
=> Vậy M là trung điểm của BC.
c) Do ∠BAI = ∠CAK (do AK là tia phân giác của ∠BAC) và ∠BAI = ∠BHI (do IH ⊥ BC và AI // BC) nên ∠CAK = ∠BHI.
- Lại có ∠ACK = ∠BHK (do CK = KH và AC // BH).
=> Vậy tam giác ACK = tam giác BHK (các góc tương ứng bằng nhau) nên ∠BAC = 2∠BIH (do ∠BAC = ∠ACK + ∠CAK = ∠BHK + ∠BHI = 2∠BIH).
~~~~~~
+) ∠ là góc nhé ^^

b: Ta có: ΔBAC cân tại A

mà AM là đường phân giác

nên M là trung điểm của BC

5 tháng 6 2016

Tam giác ABC có AB = AC (gt) => tam giác ABC cân tại A

=> tia phân giác góc A là AM vuông góc với cạnh BC (trong 1 tam giác cân, tia phân giác góc ở đỉnh cũng là đường vuông góc với cạnh đáy của tam giác đó) (khúc này nếu thầy bạn không có dạy thì nhắn tin cho mình để mình chứng minh vuông góc bằng hai tam giác bằng nhau)

Ta có: IH vuông góc BC (gt) (1)

          AM vuông góc BC (cmt) (2)

=> Từ (1)(2) suy ra: IH // AM (cùng vuông góc với BC)

=> góc BIH = góc BAM (đồng vị)

Mà góc BAM = 2 lần góc BAC (do tia AM là tia phân giác)

=> góc BIH = 2 lần góc BAC

Vậy góc BIH = 2 lần góc BAC

10 tháng 11 2016

xét tam giác AMB và tam giác AMC có:

MA chung

AB=AC (giả thiết)

MC=MB(M trung điểm BC)

Nên tam giác AMB=tam giác AMC(c.c.c)

b, Từ chứng minh a 

=> góc MAB = góc MAC và AM nằm giữa AB và AC

=> AM là tia phân giác của góc BAC

c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ

=> góc AMB=góc AMC=180 độ :2=90 độ

Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát) 

Và AM vuông góc BC ( chứng minh trên)

Và AM cắt đường vuông góc BC tại I

=> I là trọng tâm tam giác ABC

=> CI vuông góc CA

30 tháng 12 2018

xét tam giác AMB và tam giác AMC có:

MA chung

AB=AC (giả thiết)

MC=MB(M trung điểm BC)

Nên tam giác AMB=tam giác AMC(c.c.c)

b, Từ chứng minh a 

=> góc MAB = góc MAC và AM nằm giữa AB và AC

=> AM là tia phân giác của góc BAC

c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ

=> góc AMB=góc AMC=180 độ :2=90 độ

Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát) 

Và AM vuông góc BC ( chứng minh trên)

Và AM cắt đường vuông góc BC tại I

=> I là trọng tâm tam giác ABC

=> CI vuông góc CA

30 tháng 11 2021

a: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM

9 tháng 12 2022

A)Xét tam giác AMB và tam giác ABC có

BM=MC (gt)

AB=AC (gt)

AM là cạnh chung

Vậy tam giác AMB =tam giác MAC(c.c.c)

Vì tam giác AMB = tam giác AMC 

Suy ra góc AMB=góc AMC

TA có góc AMB+góc AMC = 180 độ (2 góc kề bù)

Suy ra góc AMB= góc AMC=90 độ

Suy ra Am vuông góc với BC