K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2023

a) Xét tam giác AMB và tam giác AMC ta có:

AM chung

AB=AC (gt)

MB=MC (vì M là trung điểm của BC)

Suy ra tam giác AMB=tam giác AMC (c-c-c) (đpcm)

b) Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc BAM=góc CAM (2 góc tương ứng)

Suy ra AM là tia phân giác của góc BAC (đpcm)

c) Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc AMB=góc AMC(2 góc tương ứng)

Mà góc AMB+góc AMC=180 độ (2 góc kề bù)

Suy ra góc AMB=góc AMC=180 độ/2=90 độ

Suy ra AM vuông góc với BC tại M (đpcm)

Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc ACM=góc ABM (2 góc tương ứng) (đpcm)

 

17 tháng 12 2015

a) tam giác AMB và AMC có :

AM là cạnh chung 

AB=AC(giả thiết)

MB=MC( M trung điểm của BC)

=>tam giác AMB=AMC(c-c-c)

b) tam giác AMB =AMC(cm trên)

=> góc BAM = CAM (hai góc tương ứng)

mà AM nằm giữa AB và AC

=> AM là tia phân giác của góc BAC

c)tam giác AMB = AMC (cm trên)

=> góc AMB = AMC( 2 góc tương ứng)

mà góc AMB+AMC=180o

=> góc AMB=AMC=180/2=90o

=> AM vuông góc với BC

nhớ vẽ hình

tick nha

 

6 tháng 2 2022

AB = AC => Tam giác ABC cân tại A

a. Xét tam giác AMB và tam giác AMC

AB = AC ( gt )

Góc B = góc C ( ABC cân )

BM = CM  ( gt )

Vậy...... ( c.g.c)

=> góc BAM = góc CAM ( 2 góc tương ứng )

=> AM là phân giác góc A

b. trong tam giác cân ABC đường phân giác cũng là đường cao

=> AM vuông BC

c.tam giác MEF là tam giác cân vì:

xét tam giác vuông BME và tam giác vuông CMF 

Góc B = góc C

MB = MC ( gt )

Vậy....( cạnh huyền. góc nhọn )

=> ME = MF ( 2 cạnh tương ứng )

Chúc bạn học tốt !!!

 

 

a: Xét ΔAMB và ΔAMC có 

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường phân giác

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

Suy ra: ME=MF

hay ΔMEF cân tại M

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

8 tháng 12 2021

A B C M

\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:

\(AB=AC\) (giả thiết)

\(AM\) là cạnh chung

\(BM=CM\) (giả thiết)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)

\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)

\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)

Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))

\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)

\(\Rightarrow AM\perp BC\) tại \(M\)