K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

vì tam giác ABC cân có AM trug tuyến => AM cx là phân giác góc BAC 

Xét tam giác ABD và ACE có 

AB=AC

DB=CE 

góc ABD=ACE = 180 độ - góc B 

=> 2 tam giác = nhau

=> góc DAB=ECA  mà góc BAM =MAC (cmt)

=> AM là pg góc DAE

4 tháng 12 2016

A C M B D E

Xét ΔABM và ΔACM , có :

AM là cạnh chung

BM = CM ( M là trung điểm của BC)

AB = AC ( gt )

=> ΔABM = Δ ACM ( c - c -c )

=> Góc BAM = CAM (2 góc tương ứng )

Vậy AM là tia phân giác của góc BAC

Ta có : MB + BD = MD

MC + CE = ME

Mà MC = MB , BD = CE => MD = ME

Xét ΔAMD và ΔAME ,có:

MD = ME ( c/m trên )

AM là cạnh chung

Góc DMA = góc AME ( ΔABM = ΔACM )

=> ΔADM = ΔAEM ( c - g - c )

=> Góc DAM = góc EAM ( 2 góc tương ứng )

Vậy AM là tia phân giác của góc DAE

 

 

16 tháng 1 2019

a,Xét ABM và ACM

AB=AC , AM chung , BM=MC(Do M là trung điểm của BC)

ABM = ACM

BAM = CAM                                                               (1)

Mà AM nằm giữa AB và AC ( Do M nằm giữa B và C) (2)

Từ (1) và (2)

AM là tia phân giác của BAC

16 tháng 1 2019

b,Xét BNC và DNC

NC chung , CB = CD 

Góc BCN = DCN

Tam giác:BNC = DNC

Góc BNC = DCN 

Mà BNC + DCN = 180

BNC = 90

CN vuông góc với BD

12 tháng 11 2018

a) \(\Delta ABM\)và \(\Delta ACM\)

+ AB = AC(gt)

+ BM = CM(gt)

+ Chung AM 

Vậy \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)

Suy ra \(\widehat{ABC}=\widehat{ACB}\)(hai góc tương ứng)

=> \(180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta ABD\)và \(\Delta ACE\)

\(\widehat{ABD}=\widehat{ACE}\)

+ AB = AC (gt)

+BD = EC(gt)

\(\Rightarrow\Delta ABD=\Delta ACE \left(c.g.c\right)\)

12 tháng 11 2018

Xét \(\Delta AHB\)và \(\Delta AKC\)

+ AH = AK (gt)

+ AB = AC (gt)

\(\widehat{DAB}=\widehat{EAC}\)(hai góc tương ứng)

\(\Rightarrow\Delta AHB=\Delta AKC\left(c.g.c\right)\)

=> HB=CK ( hai cạnh tương ứng)

d) Vì O là giao điểm của HB và AM nên O,A,M nằm trên cùng một đường thẳng 

Nên \(\widehat{OAM}=\widehat{BAM}+\widehat{BAO}=\widehat{CAM}+\widehat{CAO}\)

\(\widehat{BAM}=\widehat{CAM}\)vì hai góc tương ứng (cmt)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)

Xét \(\Delta BAO=\Delta CAO\)

+ AB = CA (gt)

+ Chung AO

\(\widehat{BAO}=\widehat{CAO}\)(cmt)

\(\Delta BAO=\Delta CAO\left(c.g.c\right)\)

=>OB = OC (hai cạnh tương ứng)

27 tháng 11 2016

A B C D E M 1 2 1 2

Giải:
a) Vì \(\Delta ABC\) có AB = AC nên \(\Delta ABC\) cân tại A

\(\Rightarrow\widehat{B_2}=\widehat{C_1}\)

\(\Rightarrow180^o-\widehat{B_2}=180^o-\widehat{C_1}\)

hay \(\widehat{DBE}-\widehat{B_2}=\widehat{ECD}-\widehat{C_1}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_2}\) (*)

Xét \(\Delta ABD,\Delta ACE\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{B_1}=\widehat{C_2}\) ( theo (*) )

\(BD=CE\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(c-g-c\right)\)

\(\Rightarrow AD=AE\) ( cạnh t/ứng ) (đpcm)

b) Ta có: \(BM=MC\left(=\frac{1}{2}BC\right)\)

\(BD=CE\left(gt\right)\)

\(\Rightarrow BM+BD=MC+CE\)

\(\Rightarrow MD=ME\) (**)

Xét \(\Delta DAM,\Delta MAE\) có:
\(AD=AE\) ( theo phần a )

\(MD=ME\) ( theo (**) )

\(AM\): cạnh chung

\(\Rightarrow\Delta DAM=\Delta MAE\left(c-c-c\right)\)

\(\Rightarrow\widehat{DAM}=\widehat{MAE}\) ( góc t/ứng )

\(\Rightarrow AM\) là tia phân giác của \(\widehat{DAE}\left(đpcm\right)\)

Vậy...

27 tháng 11 2016

Ta có hình vẽ

A B C D E M a/ Ta có: \(\widehat{ABC}\)=\(\widehat{ACB}\) (vì \(\Delta\)ABC cân) (*)

\(\widehat{ABC}\)+\(\widehat{ABD}\)=1800 (kề bù) (**)

\(\widehat{ACB}\)+\(\widehat{ACE}\)=1800 (kề bù) (***)

Từ (*),(**),(***) => \(\widehat{ABD}\) = \(\widehat{ACE}\) (1)

Ta có: AB = AC (GT) (2)

BD = CE (GT) (3)

Từ (1),(2),(3) => tam giác ABD = tam giác ACE

=> AD = AE (2 cạnh tương ứng) (đpcm)

b/ Xét tam giác AMD và tam giác AME có:

AD = AE (đã chứng minh ở câu a)

AM: cạnh chung

\(\begin{cases}BM=MC\\BD=CE\end{cases}\)\(\Rightarrow\) MB+BD=MC+CE \(\Rightarrow\)MD = ME

=> tam giác AMD = tam giác AME (c.c.c)

=> \(\widehat{DAM}\)=\(\widehat{EAM}\) (2 góc tương ứng)

=> AM là phân giác góc DAE (đpcm)

25 tháng 12 2016

.

25 tháng 12 2016

.

10 tháng 12 2016

Hình bạn tự vẽ nhé leuleu

a) Xét ΔABM và ΔACM có:

AB=AC (gt)

AM là cạnh chung

BM=CN (M là trung điểm của BC)

=> ΔABM=ΔACM (c-c-c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

Mà ta có: \(\widehat{AMB}+\widehat{AMC}=90^o\)

=> \(\widehat{AMB}+\widehat{AMB}=180^o\)

=> \(\widehat{AMB}=90^o\)

=> AM vuông góc với BC

b) Theo câu a ta có: ΔABM=ΔACMB

=> \(\widehat{ABM}=\widehat{ACM}\)

Mà: \(\widehat{ABD}=180^o-\widehat{ABM}=180^o-\widehat{ACM}=\widehat{ACE}\)

Xét ΔABD và ΔACE có:

AB=AC (gt)

\(\widehat{ABD}=\widehat{ACE}\) (chứng minh trên)

BD=CE (gt)

=> ΔABD=ΔACE (c-g-c)

=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)

Cũng theo câu a thì ΔABM=ΔACM

=> \(\widehat{BAM}=\widehat{CAM}\)

=> \(\widehat{BAM}+\widehat{BAD}=\widehat{CAM}+\widehat{CAE}\)

=> \(\widehat{DAM}=\widehat{EAM}\)

=> AM là tia phân giác của góc DAE

11 tháng 12 2016

ohook