Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tg ABM & tg DCM có
MB=MC (vì M là trung điểm BC)
AMB^ =DMC^(2 GÓC ĐỐI ĐỈNH)
MA =MD (GT)
=) tg ABM=tg DCM(c.g.c)
vậy.......
b) Vì tg ABC =TG DCM nên ABM^ =DCM^ (2 góc tương ứng)
Mà ABM^ & DCM^ ở vị trí so le trong nên AB//DC
vậy.....
c) bó tay
Bạn o0o đồ khùng o0o làm đúng rồi
Bạn Ngọc My Lovely làm theo cách bạn ấy nha
Ai thấy mình nói đúng thì nha
A B M I K C D
a, Xét △ABC có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)
\(\Rightarrow45^o+70^o+\widehat{ACB}=180^o\)
\(\Rightarrow\widehat{ACB}=65^o\)
b, Xét △ABM và △DCM
Có: MA = MD (giả thiết)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
\(BM=MC\)(M là trung điểm của BC)
=> △ABM = △DCM (c.g.c)
=> \(\widehat{ABC}=\widehat{MCD}\)(2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AB // CD
c, Xét △IMB và △KMC
Có: \(\widehat{IMB}=\widehat{CMK}\) (đối đỉnh)
BM = MC (gt)
\(\widehat{ABC}=\widehat{MCD}\)(cmt)
=> △IMB = △KMC (g.c.g)
=> MI = MK (2 cạnh tương ứng)
Mà M nằm giữa I, K
=> M là trung điểm của IK
a) xét tam giác ABM = DCM( c-g-c ) (*)
=) * góc BAD = góc ADC
=) AB // CD
* AB = DC ( 1 )
xét tam giác ABH= EBH ( c-g-c )
=) AB = BE ( 2 )
từ (1) và (2)=) CD=BE
b) ( đề sai, phải là CD vuông góc AC mới đúng )
từ (*) =) góc ABM = DCM
mà tg ABC vuông tại A=) ABM+ACB=90 độ
suy ra góc DCM+ACB=90 độ
=) CD vuông góc vs AC
c ) áp dụng trung tuyến cạnh huyền =) AM=1/2BC
d) Do AM = 1/2BC
=) BC = 10cm
áp dụng định lý py-ta-go cho tg ABC vuông tại A ta có:
AB^2 + AC^2 = BC^2
AB^2 = 36
AB = 6cm
Hình bạn Tự vẽ nha!!!
a, Xét \(\Delta ABM\)và \(\Delta DCM\)
có AM=MD(gt)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM=MC(gt)
Từ 3 điều trên => 2 tam giác Trên bằng Nhau
b, Vì \(\Delta ABM\) = \(\Delta DCM\)(câu a)
=> \(\widehat{ABM=}\widehat{MCD}\)(2 góc tương ứng)
Mà 2 góc ở vị trí so le trong
Từ 2 điều trên Ta được \(AB//CD\)
c, Xét \(\Delta BFC\) vuông tại \(\widehat{BFC}=90^o\)(gt)
=> \(\widehat{BCF}+\widehat{FBC}=90^o\)(tính chất tam giác vuông)
Mà \(\widehat{FBC}=\widehat{BCD}\)(câu b)
Từ 2 điều trên ta được \(\widehat{BCF}+\widehat{BCD}=90^o=>\widehat{FCD}=90^o\)
Hay \(CF\perp CD\)tại C
Còn câu d thì mình có việc thì để sau nhé!!!
Chúc bạn Hk ttoto!!@@