Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆BEA và ∆CDA, ta có:
BA = CA (gt)
\(\widehat{A}\)chung
AE = AD (gt)
Suy ra: ∆BEA = ∆CDA (c.g.c)
Vậy BE = CD (hai cạnh tương ứng)
b) ∆BEA = ∆CDA (chứng minh trên)
⇒\(\widehat{\text{B1}}=\widehat{\text{C1}}\);\(\widehat{\text{E1}}=\widehat{\text{D1}}\) (hai góc tương ứng)
\(\widehat{\text{E1}}+\widehat{\text{E2}}\)=180o (hai góc kề bù)
\(\widehat{\text{D1}}+\widehat{\text{D2}}\)=180o (hai góc kề bù)
Suy ra: \(\widehat{\text{E2}}=\widehat{\text{D2}}\)
AB = AC (gt)
⇒ AE + EC = AD + DB mà AE = AD (gt) => EC = DB
Xét ∆ODB và ∆OCE, ta có:
\(\widehat{\text{E2}}=\widehat{\text{D2}}\) (chứng minh trên)
DB = EC (chứng minh trên)
\(\widehat{\text{B1}}=\widehat{\text{C1}}\)(chứng minh trên)
Suy ra: ∆ODB = ∆OEC (g.c.g)
A B C D E O
a) Vì \(\Delta\)ABC có AB = AC nên \(\Delta\)ABC cân tại A
=> \(\widehat{ABC}\) = \(\widehat{ACB}\) (góc đáy)
hay \(\widehat{DBC}\) = \(\widehat{ECB}\)
Ta có: AD + DB = AB
AE + EC = AC
mà AB = AC; AD = AE nên DB = EC
Xét \(\Delta\)BDC và \(\Delta\)CEB có:
BD = CE (chứng minh trên)
\(\widehat{DBC}\) = \(\widehat{ECB}\) (c/m trên)
BC chung
=> \(\Delta\)BDC = \(\Delta\)CEB (c.g.c)
=> CD = BE (2 cạnh tương ứng)
b) Do \(\Delta\)BDC = \(\Delta\)CEB (câu a)
=> \(\widehat{BDC}\) = \(\widehat{CEB}\) (2 góc tương ứng)
hay \(\widehat{BDO}\) = \(\widehat{CEO}\)
và \(\widehat{DCB}\) = \(\widehat{EBC}\) (2 góc tương ứng)
Lại có: \(\widehat{DBO}\) + \(\widehat{EBC}\) = \(\widehat{ABC}\)
\(\widehat{ECO}\) + \(\widehat{DCB}\) = \(\widehat{ACB}\)
mà \(\widehat{EBC}\) = \(\widehat{DCB}\); \(\widehat{ABC}\) = \(\widehat{ACB}\)
=> \(\widehat{DBO}\) = \(\widehat{ECO}\)
Xét \(\Delta\)BOD và \(\Delta\)COE có:
\(\widehat{DBO}\) = \(\widehat{ECO}\) (c/m trên)
BD = CE (c/m câu a)
\(\widehat{BDO}\) = \(\widehat{CEO}\) (c/m trên)
=> \(\Delta\)BOD = \(\Delta\)COE (g.c.g)
O y x B A z I H 1 2
GT : \(\widehat{xOy};\) \(\widehat{O_1}=\widehat{O_2}\); OA= OB
\(I\in z\left(I\ne O\right)\);
b, AB cắt Oz tại H
KL : a, Tam giác OAI = tam giác OIB
b, HA = HB
c, AB \(\perp\)Oz
AB = AC (gt)
=> Tam giác ABC cân tại A
Xét tam giác EAB và tam giác DAC có:
EA = DA (gt)
A chung
AB = AC (gt)
=> Tam giác EAB = Tam giác DAC (c.g.c)
=> EB = DC (2 cạnh tương ứng)
EBA = DCA (2 góc tương ứng)
mà ABC = ACB (tam giác ABC cân tại A)
=> ABC - EBA = ACB - DCA
hay EBC = DCB
=> Tam giác OBC cân tại O
Xét tam giác BOD và tam giác COE có:
DBO = ECO (tam giác EAB = tam giác DAC)
BO = CO (tam giác OBC cân tại O)
BOD = COE (2 góc đối đỉnh)
=> Tam giác BOD = Tam giác COE (c.g.c)
A B C H D GT ABC: A=90 AH BC BC BD KL a) AHB= DBH b) AB HD c) ACB=? ; AH=BD
a) Xét \(\Delta AHB\)và \(\Delta DBH\)có:
AH = BD(gt)
\(\widehat{AHB}=\widehat{DBH}=90^o\left(gt\right)\)
BH là cạnh chung
\(\Rightarrow\Delta AHB=\Delta DBH\left(c.g.c\right)\)
b) Ta có: \(\Delta AHB=\Delta DBH\)(theo a)
\(\Rightarrow\widehat{ABH}=\widehat{DHB}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // DH
c) \(\Delta AHB:\widehat{AHB}=90^o\)
\(\Rightarrow\widehat{BAH}+\widehat{ABH}=90^o\)(trong tam giác vuông, 2 góc nhọn phụ nhau)
\(\Rightarrow35^o+\widehat{ABH}=90^o\)
\(\Rightarrow\widehat{ABH}=55^o\)
\(\Delta ABC:\widehat{A}=90^o\)
\(\Rightarrow\widehat{ACB}+\widehat{ABC}=90^o\)(trong tam giác vuông, 2 góc nhọn phụ nhau)
\(\Rightarrow\widehat{ACB}+55^o=90^o\)
\(\Rightarrow\widehat{ACB}=35^o\)
a/ Xét tam giác BCD và tam giác BCE có
-góc B = góc C
-BD = EC
-BC: cạnh chung
=> tam giác BCD = tam giác BCE (cạnh góc cạnh)
=> BE=CD (2 cạnh tương ứng)
b/ Xét tam giác KBD và tam giác KCE có
-Góc BKD = góc CKE (đối đỉnh)
-BD=CE
-KB=KC
=> tam giác KBD = tam giác KCE
a/ Xét 2 tam giác BDE và CED có
BD=EC
DE chung
Góc BDE = góc DEC do chúng lần lượt bù với 2 góc bằng nhau là ADE và AED
=> dpcm (c.g.c)
b/ Có góc DKB bằng góc EKC do đối đỉnh
KD=KE
góc BDK=góc CEK
Vậy tam giác BOD = tam giác COE
A B C D E O
a/ Xét tam giác ABE và tam giác ACD có :
AD = AE , góc A là góc chung của hai tam giác , AB = AC
=> tam giác ABE = tam giác ACD => CD = BE
b/ Dễ dàng chứng minh đc tam giác BED = tam giác CDE (c.c.c)
=> góc CED = góc CDE => tam giác ODE cân tại O => OD = OE (1)
Lại có BE = CD => OB = OC (2) ; góc BOD = góc EOC (đối đỉnh) (3)
Từ (1) , (2) , (3) suy ra tam giác BOD = tam giác OCE (c.g.c)
A E D B C
\(a)\)Xét \(\Delta ABE\) và \(\Delta ACD\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{A}:\) chung
\(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\)
\(\Rightarrow BE=CD\)(2 cạnh tương ứng)
\(b)AB=DA+DB\)
\(AC=EA+EC\)
Mà \(AB=AC;AD=AE\)
\(\Rightarrow DB=EC\)
Xét \(\Delta BOD\) và \(\Delta COE\) có:
\(\widehat{BOD}=\widehat{COE}\left(đ^2\right)\)
\(DB=EC\left(cmt\right)\)
\(\widehat{DBE}=\widehat{ECD}\left(\Delta ABE=\Delta ACD\right)\)
\(\Rightarrow\Delta BOD=\Delta COE\left(g.c.g\right)\)