Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: AM = AN ( = 1/2AB = 1/2AC)
=> AMN cân tại A
b) Xét tg ABN và tg ACM
có: AB = AC
^A chung
AN = AM ( = 1/2AB = 1/2AC)
=> tg ABN = tg ACM (c-g-c)
=> BN = CM
c) Xét tg ABC
có: BN cắt CM tại I
=> AI là đường trung tuyến của BC
=> AI là tia pg ^A ( tg ABC cân tại A)
d) ta có: tg ABC cân tại A
AI là đường phân giác
=> AI là đg cao
\(\Rightarrow AI\perp BC\)
ta có: tg AMN cân tại A
AI là đường cao
=> AI vuông góc với MN
...
hình tự vẽ
Bài 17 :Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Chứng minh : a) MN // BC b) BN=CM Bài 18 : Cho tam giác ABC cân tại A. Gọi M,N tk nha
a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)
\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AM=MB=AN=NC
Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(cmt)
Do đó: ΔABN=ΔACM(c-g-c)
b) Xét ΔANM có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
hay \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đoc của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
a/. Xét \(\Delta BNC\)và \(\Delta CMB\), có:
BM = CN = AB/2 (vì AB=AC do tam giác ABC cân tại A)
và: góc B = Góc C (tam giác ABc cân tại A)
BC cạnh chung
Vậy tam giác BNC = tam giác CMB (c.g.c)
=> NC = MB (2 cạnh tương ứng =)
b/. Vì tam giác BNC = tam giác CMB => góc NBC = góc MCB (2 góc tg ứng =)
=> tam giác CIB cân tại I do góc NBC = góc MCB (2 góc ở đáy =)
c/. Xét tam giác BAI và tam giác CAI, có:
AB = AC (tam giác ABC cân tại A)
và: AI canh chung
và: IB = IC (tam giác IBC cân tại B)
=> tam giác BAI = tam giác CAI (c.c.c)
=> góc BAI = góc CAI (2 góc tg ứng =)
mà tia AI nằm giauwx 2 tia AB và AC
Vậy AI là tia phân giác của góc A trong ta giác ABC
a: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)
BC chung
Do đó: ΔMBC=ΔNCB
b: ΔMBC=ΔNCB
=>\(\widehat{MCB}=\widehat{NBC}\)
Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
mà \(\widehat{ABC}=\widehat{ACB};\widehat{CBN}=\widehat{MCB}\)
nên \(\widehat{ABN}=\widehat{ACM}\)
c: AM+MB=AB
AN+NC=AC
mà AB=AC
và MB=NC
nên AM=AN
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
d: Ta có: \(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
=>OB=OC
=>O nằm trên đường trung trực của BC(1)
AB=AC
=>A nằm trên đường trung trực của BC(2)
IB=IC
=>I nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,I thẳng hàng
a.b.xét tam giác vuông BNC và tam giác vuông CMB có:
góc B = góc C ( gt )
BC: cạnh chung
Vậy tam giác vuông BNC = tam giác vuông CMB ( cạnh huyền.góc nhọn )
=> BM = CN ( 2 cạnh tương ứng )
xét tam giác vuông AMI và tam giác vuông ANI có:
A: góc chung
AI: cạnh chung
Vậy tam giác vuông AMI = tam giác vuông ANI ( cạnh huyền. góc nhọn )
=> AM = AN ( 2 cạnh tương ứng )
=> tam giác AMN cân tại A
=> AI là tia phân giác góc BAC
c. xét tam giác vuông BMI và tam giác vuông CNI có:
BM = CN ( cmt )
BI = CI ( tam giác BNC = tam giác CMB )
Vậy tam giác vuông BMI = tam giác vuông CNI ( cạnh huyền. góc nhọn )
d. ta có: AI là phân giác cũng là đường cao trong 2 tam giác cân ABC và AMN
=> AI vuông với MN và BC
=> MN // BC ( 2 cạnh cùng vuông với một cạnh )
Chúc bạn học tốt!!!
a) Ta có AB = AC và M là trung điểm của AB nên AM = MB.
Tương tự, ta có AC = AB và N là trung điểm của AC nên AN = NC.
Vậy ta có AM = MB = AN = NC.
Do đó, ta có tứ giác AMNC là hình bình hành.
Vì tứ giác AMNC là hình bình hành nên ta có CM song song với AN và BN song song với AM.
Do đó ta có CM = AN = BN.
b) Đặt I là giao điểm của tia phân giác của góc BAC với BC.
Ta cần chứng minh AI là tia phân giác của góc BAC.
Ta có AB = AC và M là trung điểm của AB nên AM = MB.
Vì AI là tia phân giác của góc BAC nên ta có góc BAI = góc IAC.
Vì AM = MB nên ta có góc BAM = góc ABM.
Do đó ta có góc BAI = góc IAC = góc BAM = góc ABM.
Do đó, ta có tứ giác ABMI là tứ giác cân.
Do đó ta có AI là tia phân giác của góc BAC.
a) M, N là trung điểm của AB, AC
Suy ra MN song song BC
mà Góc ABC = Góc ACB (AB=AC nên tam giác ABC cân tại A)
Suy ra MNBC là hình thang cân
Suy ra CM=BN
b) Tam giác ABC cân tại A nên AI là phân giác, trung tuyến, đường cao