Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B H M N C I
a, Xét \(\Delta ABH\) và \(\Delta MBH\) ta có:
\(\widehat{AHB}=\widehat{MHB}=90^o,AH=MH,\) cạnh chung \(BH\)
\(\Rightarrow\Delta ABH=\Delta MBH\left(c.g.c\right)\) ( ĐPCM )
b, Vì \(\Delta ABH=\Delta MBH\Rightarrow AB=MB\) ( 2 cạnh tương ứng )
\(\widehat{ABH}=\widehat{MBH}\) ( 2 góc tương ứng ) \(\Rightarrow\widehat{ABC}=\widehat{MBC}\)
Xét \(\Delta ABC\) và \(\Delta MBC\) ta có:
\(AB=MB,\widehat{ABC}=\widehat{MBC},\) cạnh chung \(BC\)
\(\Rightarrow\Delta ABC=\Delta MBC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAC}=\widehat{BMC}\) ( 2 góc tương ứng ) ( ĐPCM )
c, Xét \(\Delta AHI\) và \(\Delta MHI\) ta có:
\(AH=MH,\widehat{AHI}=\widehat{MHI}=90^o,\) cạnh chung \(HI\)
\(\Rightarrow\Delta AHI=\Delta MHI\left(c.g.c\right)\)
\(\Rightarrow AI=MI\) ( cạnh tương ứng ) \(\Rightarrow AI=NI=MI\Rightarrow AI=MI\)
\(\widehat{AIH}=\widehat{MIH}\) ( 2 góc tương ứng ) \(\Rightarrow\widehat{AIB}=\widehat{MIB}\)(1)
Vì \(\widehat{AIH}\) và \(\widehat{CIN}\) là 2 góc đối đỉnh \(\Rightarrow\widehat{AIB}=\widehat{CIN}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{MIB}=\widehat{AIB}=\widehat{CIN}\Rightarrow\widehat{MIB}=\widehat{CIN}\)
Vì I là trung điểm của BC => BI = CI
Xét \(\Delta BIM\) và \(\Delta CIN\) ta có:
\(BI=CI,\widehat{MIB}=\widehat{CIN},MI=NI\)
\(\Rightarrow\Delta BIM=\Delta CIN\left(c.g.c\right)\)
\(\Rightarrow NC=MB\) ( 2 cạnh tương ứng ) ( ĐPCM )
d, Xét tam giác vuông ABH, theo định lý Py-ta-go ta có:
\(AB^2=AH^2+BH^2\Rightarrow13^2=AH^2+12^2\Rightarrow169=AH^2+144\)
\(\Rightarrow AH^2=169-144=25\Rightarrow AH=\sqrt{25}=5\)
Xét tam giác vuông AHC, theo định lý Py-ta-go ta có:
\(AC^2=AH^2+CH^2\Rightarrow AC^2=5^2+16^2\Rightarrow AC^2=25+256\)
\(\Rightarrow AC^2=281\Rightarrow AC=\sqrt{281}\)
Vì điểm H nằm giữa điểm B và điểm C \(\Rightarrow BC=AH+CH\Rightarrow BC=12+16\Rightarrow BC=28\)
a)Xét tam giác ABH có: HBA + BAH + BHA = 180 (Tổng ba góc trong một tam giác)
\(\implies\) 60 + BAH + 90 =180
\(\implies\) BAH = 30
b) Xét tam giác AHI và tam giác ADI có :
AH = AD (gt)
AI chung
HI=DI (gt)
\(\implies\) tam giác AHI = tam giác ADI (c-c-c)
\(\implies\) AIH = AID (hai góc tương ứng)
Mà AIH + AID = 180 (hai góc kề bù ) (2)
\(\implies\) AIH + AIH =180
\(\implies\) 2.AIH = 180
\(\implies\) AIH = 90(1)
Từ (1);(2) \(\implies\) AIH = AID = 90
\(\implies\) AI vuông góc với HD
c)Ta có:HAI = DAI (tam giác AHI = tam giác ADI)
Hay HAK = DAK
Xét tam giác AHK và tam giác ADK có :
AH = AD (gt)
AK chung
HAK = DAK (cmt)
\(\implies\) tam giác AHK = tam giác ADK (c-g-c)
+)Ta có:BAH + HAC = BAC
\(\implies\) BAH + HAC = 90
\(\implies\) 30 +HAC =90
\(\implies\) HAC = 60
Hay HAD =60
\(\implies\) HAK + DAK =60
Mà : HAK = DAK (cmt)
\(\implies\) HAK + HAK =60
\(\implies\) 2 HAK = 60
\(\implies\) HAK = 30
Xét tam giác vuông BHA và tam giác giác vuông KHA có:
HA chung
BAH = KAH =30 (cmt)
\(\implies\) tam giác vuông BHA = tam giác vuông KHA (cạnh góc vuông - góc nhọn kề)
\(\implies\) BH = KH (hai cạnh tương ứng)
\(\implies\) H là trung điểm của BK
a) Áp dụng tính chất tổng ba góc của một tam giác ta có:
A+B+C=1800
Mà A=900(góc vuông)
C=470
=> B=180-90-47=430
ĐS:.................................
#Châu's ngốc
Bài làm
~ Tự vẽ hình, đó mik lm = đt nên k vẽ đc hình ~
a) Xét ∆BOA và ∆COK có:
OA = OK ( GT )
GÓC BOA = GÓC COK ( HAI GÓC ĐỐI )
OB = OC ( O LÀ TRUNG ĐIỂN BC )
=> ∆BOA = ∆COK ( c.g.c )
=> AB = KC ( hai cạnh tương ứng )
=> Góc ABC = GÓC KCB ( HAI GÓC TƯƠNG ỨNG )
MÀ hai góc này ở vị trí số le trong.
=> AB // CK
Mà BA | AC
=> CK | AC
Xét ∆ABC và ∆CKA có:
AB = CK ( cmt )
Góc BAC = góc KCA ( đó AB và CK cùng vuông góc với AC )
Cạnh AC chung.
=> ∆ABC = ∆CKA. ( c.g.c )
Bài alfm
Vì tâm giác ABC = tâm giác AKC
=> BC = AK.
Mà AO là trung điểm AK.
=> AO = 1/2 AK
Hay AO = 1/2BC
a) \(\Delta ABM\)và \(\Delta ACM\)
+ AB = AC(gt)
+ BM = CM(gt)
+ Chung AM
Vậy \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)
Suy ra \(\widehat{ABC}=\widehat{ACB}\)(hai góc tương ứng)
=> \(180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét \(\Delta ABD\)và \(\Delta ACE\)
+ \(\widehat{ABD}=\widehat{ACE}\)
+ AB = AC (gt)
+BD = EC(gt)
\(\Rightarrow\Delta ABD=\Delta ACE \left(c.g.c\right)\)
Xét \(\Delta AHB\)và \(\Delta AKC\)
+ AH = AK (gt)
+ AB = AC (gt)
+ \(\widehat{DAB}=\widehat{EAC}\)(hai góc tương ứng)
\(\Rightarrow\Delta AHB=\Delta AKC\left(c.g.c\right)\)
=> HB=CK ( hai cạnh tương ứng)
d) Vì O là giao điểm của HB và AM nên O,A,M nằm trên cùng một đường thẳng
Nên \(\widehat{OAM}=\widehat{BAM}+\widehat{BAO}=\widehat{CAM}+\widehat{CAO}\)
\(\widehat{BAM}=\widehat{CAM}\)vì hai góc tương ứng (cmt)
\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)
Xét \(\Delta BAO=\Delta CAO\)
+ AB = CA (gt)
+ Chung AO
+ \(\widehat{BAO}=\widehat{CAO}\)(cmt)
\(\Delta BAO=\Delta CAO\left(c.g.c\right)\)
=>OB = OC (hai cạnh tương ứng)
câu hỏi tương tự