K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAMB và ΔAMC có

AB=AC(gt)

MB=MC(M là trung điểm của BC)

AM chung

Do đó: ΔAMB=ΔAMC(c-c-c)

b) Sửa đề: AM=MD

Xét ΔAMC và ΔDMB có 

AM=DM(gt)

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔAMC=ΔDMB(c-g-c)

⇒AC=DB(Hai cạnh tương ứng)

c) Ta có: ΔAMC=ΔDMB(cmt)

nên \(\widehat{ACM}=\widehat{DBM}\)(hai góc tương ứng)

mà \(\widehat{ACM}\) và \(\widehat{DBM}\) là hai góc ở vị trí so le trong

nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)

14 tháng 1 2021

o

a: Xét ΔAMB và ΔAMD có

AM chung

MB=MD

AB=AD

Do đó: ΔAMB=ΔAMD

b: Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

c: Xét ΔKBE và ΔKDC có

KB=KD

\(\widehat{KBE}=\widehat{KDC}\)

BE=DC

Do đó: ΔKBE=ΔKDC

Suy ra: \(\widehat{BKE}=\widehat{DKC}\)

=>\(\widehat{BKE}+\widehat{BKD}=180^0\)

hay E,K,D thẳng hàng

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

24 tháng 2 2020

A B C H E D M S N K I

Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath

c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE  

=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE 

=> \(\Delta\)ABE cân tại B 

=> AB = BE 

d) Ta có: SN vuông AH ; BC vuông AH 

=> SN //BC 

=> NK //MC 

=> ^KNI = ^MCI 

mặt khác có: NK = MC ; IN = IC ( gt)

=> \(\Delta\)NIK = \(\Delta\)CIM

=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o

=> ^CIM + ^KIC = 180o

=> ^KIM = 180o

=>M; I ; K thẳng hàng

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm 

2 tháng 1 2021

a, xét \(\Delta AMBva\Delta AMC\)

AB=AC

AM cạnh chung

MB=MC

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)

b, xét \(\Delta AMBva\Delta CMD\)

AM=MD

\(\widehat{AMB}=\widehat{CMD}\)

MB=MC

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{MDC}\)

mà 2 góc này ở vị chí so le trong 

\(\Rightarrow AB//CD\)

c, theo bài: tia MD là tia dối của tia MA 

\(\Rightarrow\widehat{AMD}=180^0\)

 \(\widehat{KMD}=\widehat{IMA}\)( 2 góc đối đỉnh)

ta có: \(\widehat{AMD}=\widehat{AMK}+\widehat{KMD}\)

hay\(\widehat{AMD}=\widehat{AMK}+\widehat{AMI}=180^0\)

\(\Rightarrow\widehat{IMK}=180^0\)

\(\Rightarrow\)I,M,K thẳng hàng

2 tháng 1 2021

cho mik nha

6 tháng 1 2022

a/ 

Xét tg ABM và tg ACM có

AB=AC(gt); MB=MC(gt); AM chung => tg ABM = tg ACM (c.c.c)

b/

Ta có

AB=AC (gt) => tg ABC cân tại A

MB=MC (gt) => AM là trung tuyến của tg ABC

=> AM là phân giác của \(\widehat{BAC}\) (trong tg cân đường trung tuyến xp từ đỉnh đồng thời là đường phân giác của góc ở đỉnh)

c/

Xét tg ABM và tg NCM có

AM=MN (gt)MB=MC (gt)

\(\widehat{AMB}=\widehat{NMC}\)(góc đối đỉnh)

=> tg ABM = tg NCM (c.g.c) \(\Rightarrow\widehat{BAM}=\widehat{CNM}\)=> AB // CN (hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành 2 góc so le trong bằng nhau thì chúng // với nhau)

d/

Nối IK cắt BC tại M'

Ta có AB // CN => \(\widehat{IBM'}=\widehat{KCM'}\)(góc so le trong) và \(\widehat{BIM'}=\widehat{CKM'}\)(góc so le trong)

BI=CK (gt)

=> tg BIM' = tg CKM' (g.c.g) => M'B=M'C => M' là trung điểm của BC mà M cũng là trung điểm của BC (gt) => M trùng M'

=> I; M; K thẳng hàng