K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBAM và ΔCAM có

AM chung

góc BAM=góc CAM

AB=AC

=>ΔBAM=ΔCAM

=>MB=MC và góc AMB=góc AMC=180/2=90 độ

=>AM vuông góc BC

a: Xét ΔMAB có MD là phân giác

nên AD/DB=AM/MB=AM/MC

Xét ΔMAC ó ME là phân giác

nên AE/EC=AM/MC=AD/DB

=>ED//BC

b: Xét ΔMAB có MD là phân giác

nên AD/DB=AM/MB=5/3

=>AD/AB=5/8

Xét ΔABC có DE//BC

nên DE/BC=AD/AB

=>DE/6=5/8

=>DE=3,75cm

a: Xét ΔAMB có MD là phân giác

nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}=\dfrac{AM}{MC}\left(1\right)\)

Xét ΔAMC có ME là phân giác

nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

Xét ΔABC có \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

nên DE//BC

b: M là trung điểm của BC

nên \(MB=MC=\dfrac{BC}{2}=\dfrac{a}{2}\)

Xét ΔAMB có MD là phân giác

nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}\)

=>\(\dfrac{AD}{DB}=\dfrac{m}{\dfrac{a}{2}}=m:\dfrac{a}{2}=\dfrac{2m}{a}\)

=>\(\dfrac{DB}{AD}=\dfrac{a}{2m}\)

=>\(\dfrac{DB+AD}{AD}=\dfrac{a+2m}{2m}\)

=>\(\dfrac{AB}{AD}=\dfrac{a+2m}{2m}\)

=>\(\dfrac{AD}{AB}=\dfrac{2m}{a+2m}\)

Xét ΔABC có DE//BC

nên \(\dfrac{AD}{AB}=\dfrac{DE}{BC}\)

=>\(\dfrac{DE}{a}=\dfrac{2m}{a+2m}\)

=>\(DE=\dfrac{2am}{a+2m}\)

1 tháng 1 2024

ko bt

 

a: Xét ΔAMB có MD là phân giác của góc AMB

nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}=\dfrac{AM}{MC}\left(1\right)\)

Xét ΔAMC có ME là phân giác của góc AMC

nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

Xét ΔABC có \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

nên DE//BC

b: Gọi I là giao điểm của AM và DE

Xét ΔABM có DI//BM

nên \(\dfrac{DI}{BM}=\dfrac{AI}{AM}\left(3\right)\)

Xét ΔAMC có IE//MC

nên \(\dfrac{IE}{MC}=\dfrac{AI}{AM}\left(4\right)\)

Từ (3) và (4) suy ra \(\dfrac{DI}{BM}=\dfrac{IE}{MC}\)

mà BM=MC

nên DI=IE

=>I là trung điểm của DE

Xét ΔAMB có MD là phân giác

nên \(\dfrac{AM}{MB}=\dfrac{AD}{DB}\)

=>\(\dfrac{DB}{AD}=\dfrac{MB}{AM}\)

=>\(\dfrac{DB+AD}{AD}=\dfrac{MB+AM}{AM}\)

=>\(\dfrac{AB}{AD}=\dfrac{\dfrac{a}{2}+m}{m}\)

=>\(\dfrac{AD}{AB}=\dfrac{m}{\dfrac{a}{2}+m}=m:\dfrac{a+m}{2}=\dfrac{2m}{a+m}\)

XétΔABC có DE//BC

nên \(\dfrac{DE}{BC}=\dfrac{AD}{AB}\)

=>\(\dfrac{DE}{a}=\dfrac{2m}{a+m}\)

=>\(DE=\dfrac{2ma}{a+m}\)

d: Để DE là đường trung bình của ΔABC thì D,E lần lượt là trung điểm của AB,AC

Xét ΔMAB có

MD là đường trung tuyến

MD là đường phân giác

Do đó: ΔMAB cân tại M

=>MA=MB

Xét ΔMAC có

ME là đường phân giác

ME là đường trung tuyến

Do đó: ΔMAC cân tại M

=>MA=MC

mà MA=MB

nên MB=MC

=>M là trung điểm của BC

Xét ΔABC có

AM là đường trung tuyến

\(AM=\dfrac{BC}{2}\)

Do đó: ΔABC vuông tại A

=>\(\widehat{BAC}=90^0\)

7 tháng 1 2024

Đây nhiiiloading... loading... loading...  

26 tháng 3 2022

cứu mình với ạ

26 tháng 3 2022

Cậu tham khảo:

undefined

22 tháng 3 2021

a) \(BM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)

Tam giác ABM có MD là p/giác

\(\Rightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}=\dfrac{6}{5}\)

b) Tam giác AMC có ME là p/giác

\(\Rightarrow\dfrac{MC}{AM}=\dfrac{EC}{AE}\)

Mà: MC = BM (GT)

\(\Rightarrow\dfrac{BM}{AM}=\dfrac{EC}{AE}\)

c) Có: \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\left(cmt\right)\) (1)

Tam giác AMC có ME là p/giác

\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{MC}\)

Mà: BM = MC (GT)

\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{BM}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\)

=> DE // BC

a) Ta có: M là trung điểm của BC(gt)

nên \(MB=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(Gt)

nên \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{BD}=\dfrac{6}{5}\)

a: BC=2MB=90cm

Xét ΔAMB có MD là phân giác

nên AD/AM=DB/BM

=>AD/30=DB/45

=>AD/2=DB/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{2}=\dfrac{DB}{3}=\dfrac{AD+DB}{2+3}=\dfrac{50}{5}=10\)

Do đó: AD=20(cm); DB=30(cm)

b: Xét ΔAMB có MD là phân giác

nên AD/DB=AM/MB=AM/MC(1)

Xét ΔAMC có ME là phân giác

nên AE/EC=AM/MC(2)

Từ (1) và (2) suy ra AD/DB=AE/EC

hay DE//BC

a: BC=2*MB=90cm

Xét ΔMAB có MD là phân giác

nên AD/MA=BD/BM

=>AD/6=BM/9=50/15=10/3

=>AD=10/3*6=20cm; BM=10/3*9=30cm

b: Xét ΔMAC có ME là phân giác

nên AE/EC=AM/MC

=>AE/EC=AD/DB

=>ED//BC

a: Xét ΔAMB có MD là phân giác

nên AD/DB=AM/MB=AM/MC(1)

Xét ΔAMC có ME là phân giác

nên AE/EC=AM/MC(2)

Từ (1) và (2) suy ra AD/DB=AE/EC
hay DE//BC

b: MB=3cm

AD/DB=AM/MB=5/3

=>AD/DB=AE/EC=5/3

=>DB/AD=3/5

=>AD/AB=5/8

Xét ΔABC có DE//BC

nên AD/AB=DE/BC

=>DE/6=5/8

hay DE=3,75(cm)