K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TC
Thầy Cao Đô
Giáo viên VIP
27 tháng 12 2022

loading...

a) Xét hai tam giác vuông $AHB$ và $AHC$ có:

$AH$ là cạnh chung;

$AB = AC$ (gt);

Suy ra $\Delta AHB=\Delta AHC$ (cạnh huyền - cạnh góc vuông)

Suy ra $HB = HC$ (Hai cạnh tương ứng)

$\widehat{BAH} = \widehat{CAH}$ (hai góc tương ứng).

b) Xét hai tam giác vuông $ADH$ và $AEH$ có:

$AH$ là cạnh chung;

$\widehat{BAH} = \widehat{CAH}$ (cmt);

Suy ra $\Delta ADH=\Delta AEH$ (cạnh huyền - góc nhọn).

Suy ra $HD = HE$ (Hai cạnh tương ứng) nên $\Delta HDE$ cân tại $H$.

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC 

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

hay \(\widehat{BAH}=\widehat{CAH}\)

b: BH=CH=BC/2=4(cm)

nên AH=3(cm)

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

\(\widehat{EAH}=\widehat{DAH}\)

DO đó: ΔAEH=ΔADH

Suy ra: HE=HD

hay ΔHDE cân tại H

25 tháng 12 2022

bạn ơi, cho mình xem hình vẽ với

 

15 tháng 4 2020

a) Chứng minh được tam giác ABH= tam giác ACH (ch-cgv)

Suy ra: HB=HC (2 góc tương ứng). Vậy H là trung điểm BC.

Suy ra HB=HC=BC:2=8:2=4

và góc BAH=góc CAH.

b) Ta có: tam giác ABH vuông tại H(AH vuông góc BC)

Suy ra AH^2 + BH^2 =AB^2

Suy ra AH^2+4^2= 5^2

Suy ra AH^2= 9

Mà AH>0

Suy ra AH=3

c) Xét tam giác ADH và tam giác AEH có:

+ Góc ADH = Góc AEH = 90o (HD vuông góc AB, HE vuông góc AC)

+ AH là cạnh chung

+ Góc DAH= Góc EAH(do tam giác ABH= tam giác ACH)

=> tam giác ADH = tam giác AEH (ch-gh)

Suy ra HD=HE (2 góc tương ứng)

Suy ra tam giác HDE cân tại H.

15 tháng 4 2020

Xét ΔAHBvà ΔAHCΔAHBvàΔAHCcó:

AHBˆ=AHC=ˆAHB^=AHC=^90 độ ( gt )

AH là cạnh chung

AB=AC=5cm ( gt )

Do đó: ΔABH=ΔACHΔABH=ΔACH( cạnh huyền-cạnh góc vuông)

⇒HB=HC⇒HB=HC( 2 cạnh tương ứng )

b) Ta có: HB = HC = 12.BC=12.8=82=412.BC=12.8=82=4 cm

Áp dụng định lí Py-ta-go vào ΔAHBΔAHB vuông tại H, ta có:

BA2=BH2+AH2BA2=BH2+AH2

hay: 52=42+AH2⇒AH2=52−42=52=42+AH2⇒AH2=52−42= 25 - 16 = 9 = 3232

Vậy AH = 3 cm.

c) Xét ΔHDBvà ΔHECΔHDBvàΔHEC, ta có:

HDBˆ=HECˆHDB^=HEC^ = 90 độ ( gt )

BH = CH ( câu a )

Do đó: ΔHDB=ΔHECΔHDB=ΔHEC( cạnh huyền - góc nhọn )

⇒DH=HE⇒DH=HE ( 2 cạnh tương ứng ) (1)

Từ (1) => ΔHDEΔHDE cân tại H.

Chúc bạn học tốt ( tớ có 2 cách làm nhưng bạn kẻ hình nhé )

6 tháng 5 2016

a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:

                                     AH: chung

                                     AB=AC (gt)

=>Tam giác ABH=tam giác ACH (cạnh huyền-cạnh góc vuông)

  =>HB=HC (2 cạnh tương ứng)

b)Vì HB=HC (câu a) => HB=HC=BC:2=8:2=4 (cm)

Xét tam giác ABH vuông tại H có: AB2 = AH2 + BH2 (định lý Py-ta-go)

                                                  52    = AH2 + 42

                                                                  AH2 = 52 - 42 = 25-16=9

                                                 AH=\(\sqrt{9}=3\)

c) Vì tam giác ABH=tam giác ACH (câu a) => góc BAH=góc CAH (2 góc tương ứng)

Xét tam giác ADH vuông tại D và tam giác AEH vuông tại E có:

                                        AH: chung

                                        góc BAH=góc CAH (cmt)

=> Tam giác ADH=tam giác AEH (cạnh huyền-góc nhọn)

  =>HD=HE (2 cạnh tương ứng)

  =>tam giác DHE cân tại H

d) Tam giác EHC vuông tại E có HC là cạnh huyền =>HC là cạnh lớn nhất trong tam giác EHC hay HC>HE

Mà HE=HD (cmt) => HC>HD

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểmcủa BC

hay HB=HC

b: Xét ΔADH vuông tạiD và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra HD=HE

hay ΔHDE cân tại H

1 tháng 5 2019

A B C D E H

a, Xét \(\Delta ABH\) và\(\Delta ACH\) CÓ:

\(AHchung\)

AB = AC 

\(\widehat{AHB}=\widehat{AHC}\)

\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền cạnh góc vuông)

=> BH = HC ( 2 cạnh tương ứng )

b,Do BC = 8cm => BH = 4cm 

Áp dụng định lý Py ta go vào tam giác vuông ABH có :

\(AH^2+BH^2=AB^2\)

\(\Rightarrow AH^2=AB^2-BH^2\)\(\Rightarrow AH^2=5^2-4^2=25-16=9\)\(\Rightarrow AH=3\left(cm\right)\)

c,\(Xét\Delta DBH\) và\(\Delta ECH\) có :

\(\widehat{ABH}=\widehat{ACH}\)

BH = HC

\(\widehat{BDH}=\widehat{CEH}\)

\(\Rightarrow\Delta DBH=\Delta ECH\)\(\Rightarrow DH=EH\)=> \(\Delta DHE\) cân tại H

cho mình 1 tym nha

15 tháng 5 2016

a) Tam giác AHB = tam giác AHC  => HB=HC

b) AH vừa là đường cao vừa là trung tuyến => HB=HC=4(cm)

Theo định lí Pytago trong tam giác AHB vuông yaij H, tính được AH=3cm

c; d) Tam giác BDH = tam giác CEH

=> HD=HE

Xét tam giác vuông HEC có cạnh HC đối diện góc 90 độ

=> HC>HE mà HE=HD

=> HC>HD