Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a.ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến => HB = HC
b.áp dụng định lý pitago ta có:
\(AB^2=AH^2+HB^2\)
\(5^2=AH^2+\left(8:2\right)^2\)
\(AH=\sqrt{5^2-4^2}=3cm\)
c.Xét tam giác vuông BHD và tam giác vuông CHE, có:
BH = CH ( cmt )
góc B = góc C ( ABC cân )
Vậy tam giác vuông BHD = tam giác vuông CHE
=> HD = HE
=> HDE cân tại H
d.ta có AB = AD + DB
AC = AE + EC
Mà BD = CE ( 2 cạnh tương ứng của 2 tam giác bằng nhau )
=> AD = AE
=> ADE cân tại A
Mà A là đường cao cũng là đường trung trực trong tam giác cân ABC cũng là đường trung trực của tam giác cân ADE ( cmx )
Chúc bạn học tốt !!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Xét 2 tam giác vuông HAB và HAC có:
AB=AC=5
AH: cạnh chung
Do đó tam giác HAB= tam giác HAC (Cạnh huyền-góc nhọn)
=>HB=HC(2 cạnh tương ứng)
b)Ta có HB=HC(1)
HB+HC=BC (2)
Thay (1) vào(2) ta có:
2HB=BC
=>HB=BC/2=6/2=3(cm).
Áp dụng định lí Py-ta-go vào tam giác vuông HAB ta có:
AB^2=HB^2+ HA^2
5^2=3^2+HA^2
HA^2=25-9=16
=>HA=4(cm)
c)Tam giác ABC cân tại A
=>AH vừa là đường cao vừa là đường phân giác
=>Góc BAH= góc CAH
Xét hai tam giác vuông HDA và tam giác vuông HAE có:
Góc BAH= góc CAH (c/m ở trên)
AH: cạnh chung
Do đó tam giác HDA = tam giác HAE(cạnh huyền-góc nhọn)
=>HD=HE(2 cạnh tương ứng)
=>Tam giác HDE cân tại H
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tam giác ABH và tam giác ACH
AB=AC(GT)
^AHB=^AHC=90o
^ABH=^ACH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác ABH = tam giác ACH
=> HB=HC ( 2c tứ)
có HB+HC=BC
mà BC=8 cm
HB=HC
=> HB=HC=4cm
Xét tam giác ABH : ^H=90o
=> AB2+AH2+BH2(đ/lý pythagoras)
thay số ta có :
52=AH2+42
25-16=AH2
9=AH2
3=AH
c)Xét tam giác BDH và tam giác ECH
^BDH= ^ HEC =90o
BH=CH
^DBH=^ECH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác BDH = tam giác ECH
=> DH=EH
=> HDE CÂN TẠI H (Đ/N)
d) qua tia đối của DH ; kẻ HK sao cho HK= DH
CÓ : tam giác HCK có cạnh HK là cạnh lớn nhất ( cạnh huyền) => HK > HC
mà HD=HK
=> HD>HC
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:
AH: chung
AB=AC (gt)
=>Tam giác ABH=tam giác ACH (cạnh huyền-cạnh góc vuông)
=>HB=HC (2 cạnh tương ứng)
b)Vì HB=HC (câu a) => HB=HC=BC:2=8:2=4 (cm)
Xét tam giác ABH vuông tại H có: AB2 = AH2 + BH2 (định lý Py-ta-go)
52 = AH2 + 42
AH2 = 52 - 42 = 25-16=9
AH=\(\sqrt{9}=3\)
c) Vì tam giác ABH=tam giác ACH (câu a) => góc BAH=góc CAH (2 góc tương ứng)
Xét tam giác ADH vuông tại D và tam giác AEH vuông tại E có:
AH: chung
góc BAH=góc CAH (cmt)
=> Tam giác ADH=tam giác AEH (cạnh huyền-góc nhọn)
=>HD=HE (2 cạnh tương ứng)
=>tam giác DHE cân tại H
d) Tam giác EHC vuông tại E có HC là cạnh huyền =>HC là cạnh lớn nhất trong tam giác EHC hay HC>HE
Mà HE=HD (cmt) => HC>HD
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H D E 1 2 1 1
Cm: Xét t/giác ABH và t/giác ACH
có : AB = AC (gt)
\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)
AH : chung
=> t/giác ABC = t/giác ACH (ch - cgv)
=> BH = HC (2 cạnh t/ứng ) => AH là đường cao của t/giác ABC
=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc t/ứng) => AH là đường p/giác của t/giác ABC
Ta có: BH = HC (cmt)
\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)
=> AH là đừng trung trực của t/giác ABC
b) Ta có: BH = HC = 1/2. BC = 1/2 . 8 = 4 (cm)
Áp dụng t/c của dãy tỉ số bằng nhau vào t/giác ABH vuông tại H , ta có:
AB2 = AH2 + BH2
=> AH2 = AB2 - BH2 = 52 - 42 = 25 - 16 = 9
=> AH = 3
Vậy AH = 3 cm
c) Xét t/giác ADH và t/giác AEH
có : \(\widehat{ADH}=\widehat{AEH}=90^0\) (gt)
AH : chung
\(\widehat{A_1}=\widehat{A_2}\) (gt)
=> t/giác ADH = t/giác AEH (ch - gn)
=> AD = AE (2 cạnh t/ứng)
=> t/giác ADE cân tại A
=> \(\widehat{D_1}=\widehat{E_1_{ }}=\frac{180^0-\widehat{A}}{2}\) (1)
Ta có: AB = AC (gt)
=> t/giá ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{D_1}=\widehat{B}\)
Mà 2 góc này ở vị trí đồng vị
=> DE // BC (Đpcm)