K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

A, Có AB=AC(gt)= 5cm

Do AM là trung tuyến suy ra BM=MC=1/2BC=3cm

Xét tam giác AMC có

AM2+MC2=AC (pytago)

AM2= AC2-MC2suy ra AM2= 52-32=25-9=16suy ra AM= 4cm

23 tháng 4 2019

b, Xét 2 tam giác AMB; CMD có

BM=MC(a)

AM=MD( gt)

Góc AMB= góc CMD( đối đỉnh)

Suy ra tam giác AMB= tam giác CMD(c.g.c) suy ra điều phải chứng minh

26 tháng 4 2019

Sao tam giác ABM = tam giác DCM đc

26 tháng 4 2019

Xét tam giác ABC có 

     AB = AC ( = 5 cm )

=> tam giác ABC cân tại A ( ĐN)

Ta có AM là trung tuyến (gt)

=> AM là đg cao (t/c tam giác cân)

=> AM vuông BC (ĐN)

Ta có M là trung điểm của BC(AM là trung tuyến)

      => BM=CM=1/2 BC=6/2=3cm

Xét tam giác ABM có

    AM vuông BC (cmt)

=> tam giác ABM vuông tại M (ĐN)

=> AM2 +BM2 = AB2 (đ/l Pitago)

Thay số: AM2 + 3 = 5

=> AM2= 5-3

=> AM2= 2

=> AM = \(\sqrt{2}\)(cm)

b) tam giác  \(ABM\ne DCM\)

c) tam giác ACD ko cân

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

17 tháng 4 2019

đề bài sai nhé, bn xem lại câu a

17 tháng 4 2019

Mình ghi nhầm: 

a) Chứng minh: tam giác MAB= tam giác MDC. Suy ra góc ACD vuông

b) Gọi K là trung điểm của AC. Chứng minh: KB=KD

c) KD cắt BC tại I. KB cắt AD tại N. Chứng minh : tam giác KNI cân

21 tháng 6 2021

giúp mik nhanh câu c dc khum ạ

2 câu kia mik xong r

cảm ơn các bạn

25 tháng 6 2020

thiếu đề bài nhé bạn

28 tháng 6 2020

thiếu đề

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

góc BAC=90 độ

=>ABDC là hình chữ nhật

=>ΔACD vuông tại C

b: Xet ΔKCD vuông tại C và ΔKAB vuông tại A có

KC=KA

CD=AB

=>ΔKCD=ΔKAB

=>KD=KB

 

22 tháng 4 2017

c/ Ta có tính chất: Trong 1 tam giác vuông, trung tuyến của góc vuông đến cạnh đối diện (cạnh huyền) sẽ bằng 1/2 cạnh huyền.

Xét tam giác vuông ABC, có trung tuyến AM, vậy AM=CM (=1/2 BC) => Tam giác ACM cân ( 2 cạnh bên bằng nhau) => ^ MCA=^MAC

Xét tam giác DMB và tam giác CMA

Có: CM=MB ( M trugn điểm)

      DM=AM ( gt)

      ^DMB=^CMA (đđ)

Vậy hai tam giác =nhau =>^BDM=^MAC và ^DBM=^

B suy tiếp nhé!

22 tháng 4 2017

Bạn tự vẽ hình nha!

Xét tam giác ABC vuông tại A, có: \(BC^2=AB^2+AC^2\)

                                                \(225=81+AC^2\)

                                                 \(\Rightarrow AC^2=144\)

                                                \(\Rightarrow AC=12\left(cm\right)\)

Xét tam giác MAB và tam giác MDC:

Có: DM=AM (gt)

      CM=MB (AM trung tuyến)

      Góc DMC=Góc AMB (đđ)

Vậy tam giác MAB= tam giác MDC (C.G.C)