K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

A B C D E K

a) Xét tam giác ABC và tam giác AED có :

 \(\widehat{A}\)chung

\(\frac{AB}{AE}=\frac{AC}{AD}\left(=\frac{1}{2}\right)\)

Suy ra tam giác ABC ~ tam giác AED ( c-g-c )

b) Từ tam giác ABC ~ tam giác ADE (cmt) ta có :

\(\frac{BC}{ED}=\frac{AB}{AE}=\frac{1}{2}\Rightarrow ED=2BC=2\cdot7=14\left(cm\right)\)

c) Xét tam giác ADC và tam giác AEB có :

\(\widehat{A}\)chung

\(\frac{AD}{AE}=\frac{AC}{AB}\left(=\frac{4}{3}\right)\)

Suy ra tam giác ADC ~ tam giác AEB ( c-g-c )

\(\Rightarrow\widehat{BDK}=\widehat{CEK}\)

Xét tam giác KCE và tam giác KDB có :

\(\widehat{BKD}=\widehat{CKE}\)(2 góc đối đỉnh)

\(\widehat{BDK}=\widehat{CEK}\left(cmt\right)\)

Suy ra tam giác KCE ~ tam giác KDB ( g-g )

Từ tam giác ABC ~ tam giác AED (cmt) suy ra \(\widehat{ABC}=\widehat{AED}\)

Từ tam giác KCE ~ tam giác KDB (cmt) suy ra \(\widehat{KBD}=\widehat{KCE}\)

Ta có \(\widehat{CDE}=180"-\widehat{CED}-\widehat{DCE}=180"-\widehat{ABC}-\widehat{DBK}\)(1)

Lại có \(\widehat{CBE}=180"-\widehat{ABC}-\widehat{DBK}\)(2)

Từ (1) và (2) suy ra \(\widehat{CBE}=\widehat{CDE}\)

\(\RightarrowĐPCM\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

Do đó ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

=>ΔADE\(\sim\)ΔACB

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

c: AD là phân giác

=>AD/DC=BA/BC=AH/AC

=>AD*AC=AH*DC

18 tháng 4 2023

Với 9 tia chung gốc số góc tạo thành là

A. 16 góc

B. 72 góc

C. 36 góc 

D. 42 góc

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

HA=9*12/15=108/15=7,2cm

HB=9^2/15=81/15=5,4cm

\(S_{HBA}=\dfrac{1}{2}\cdot7.2\cdot5.4=19.44\left(cm^2\right)\)

 

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5

=>AD=4,5cm; CD=7,5cm

d: góc ADI=90 độ-góc ABD

góc AID=góc BIH=90 độ-góc DBC

mà góc ABD=góc DBC

nên góc ADI=góc AID

=>ΔAID cân tại A

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

b: ΔHAB vuông tại H có HM vuông góc AB

nên MH^2=MA*MB

 

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: Xét ΔBAC có BD là phân giác

nen AD/BA=DC/BC

=>AD/3=DC/5=12/8=1,5

=>AD=4,5cm; DC=7,5cm

d: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

=>ΔAID cân tại A

a: XétΔABC có AD là phân giác

nên DB/CD=AB/AC=3/4(1)

b: Xét ΔCAB có ED//AB

nên ED/EC=AB/AC(2)

từ (1) và (2) suy ra BD/CD=ED/EC

hay \(BD\cdot EC=ED\cdot CD\)