Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì AD là phân giác nên \(\frac{AB}{AC}=\frac{DB}{DC}\Rightarrow\frac{DC}{AC}=\frac{DB}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\frac{DC}{AC}=\frac{DB}{AB}=\frac{BC}{AB+AC}=\frac{10}{15}=\frac{2}{3}\Rightarrow DC=6cm;DB=4cm\)
a) △ABC có AD là đường phân giác
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{DB}{DC}\) (t/c)
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{6}{9}=\dfrac{2}{3}\Rightarrow3DB=2DC\)
Mà \(BD+CD=BC=10\)
\(\Rightarrow2BD+2CD=5BD=20\\ \Rightarrow BD=4\left(cm\right)\)
△ABC có AE là đường phân giác ngoài tại đỉnh A
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{EB}{EC}\) (T/c)
\(\Rightarrow\dfrac{EB}{EC}=\dfrac{6}{9}=\dfrac{2}{3}\Rightarrow3EB=2EC\)
Mà \(EC=EB+BC=EB+10\)
\(\Rightarrow2EB+20=2EC=3EB\\ \Rightarrow BE=20\left(cm\right)\)
b) △ABC có AD là đường phân giác trong
AE là đường phân giác ngoài tại đỉnh A
\(\Rightarrow AD\perp AE\) → △ADE vuông tại A
c) Kẻ AH ⊥ BC
\(S_{ADB}=\dfrac{AH}{2}\cdot BD\)
\(S_{ADC}=\dfrac{AH}{2}\cdot CD\)
Mà \(DB=\dfrac{2}{3}DC\)
\(\Rightarrow S_{ADB}=\dfrac{2}{3}S_{ADC}\)
Lời giải:
a. $AB=AC=14$ cm nên $ABC$ là tam giác cân tại $A$
Do đó đường phân giác $AD$ đồng thời là đường trung tuyến
$\Rightarrow BD=DC=\frac{BC}{2}=6$ (cm)
b.
$\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=1$
#muon roi ma sao con
a, Xét tam giác BEF và tam giác DEA ta có :
^BEF = ^DEA ( đ.đ ) vì AD // BC ( ABCD là hình bình hành )
\(\frac{AE}{EF}=\frac{DE}{BE}\) do AD // BC ( theo định lí Ta lét ) (1)
Vậy tam giác BEF ~ tam giác DEA ( c.g.c )
b, Xét tam giác EGD và tam giác EAB ta có :
^GED = ^EAB ( đ.đ )
\(\frac{AE}{EG}=\frac{BE}{ED}\)AB // DG ( theo định lí Ta lét ) (2)
Vậy tam giác EGD ~ tam giác EAB ( c.g.c )
\(\Rightarrow\frac{EG}{EA}=\frac{ED}{EB}\Rightarrow EG.EB=ED.EA\)( đpcm )
c, Từ (2) ta có : \(\frac{AE}{EG}=\frac{BE}{ED}\Rightarrow\frac{EG}{AE}=\frac{ED}{BE}\)( 3 )
Từ (1) ; (3) ta có : \(\frac{AE}{EF}=\frac{EG}{AE}=\frac{ED}{BE}\Rightarrow AE^2=EG.EF\)
a, Xét tam giác AEB và tam giác AFC ta có
^AEB = ^AEC = 900
^A _ chung
Vậy tam giác AEB ~ tam giác AFC ( g.g )
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.AC=AB.AF\)