K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2022

a, Vì AD là phân giác nên \(\frac{AB}{AC}=\frac{DB}{DC}\Rightarrow\frac{DC}{AC}=\frac{DB}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\frac{DC}{AC}=\frac{DB}{AB}=\frac{BC}{AB+AC}=\frac{10}{15}=\frac{2}{3}\Rightarrow DC=6cm;DB=4cm\)

23 tháng 1 2021

a) △ABC có AD là đường phân giác

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{DB}{DC}\) (t/c)

\(\Rightarrow\dfrac{DB}{DC}=\dfrac{6}{9}=\dfrac{2}{3}\Rightarrow3DB=2DC\)

Mà \(BD+CD=BC=10\)

\(\Rightarrow2BD+2CD=5BD=20\\ \Rightarrow BD=4\left(cm\right)\)

△ABC có AE là đường phân giác ngoài tại đỉnh A

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{EB}{EC}\) (T/c)

\(\Rightarrow\dfrac{EB}{EC}=\dfrac{6}{9}=\dfrac{2}{3}\Rightarrow3EB=2EC\)

Mà \(EC=EB+BC=EB+10\)

\(\Rightarrow2EB+20=2EC=3EB\\ \Rightarrow BE=20\left(cm\right)\)

b) △ABC có AD là đường phân giác trong

AE là đường phân giác ngoài tại đỉnh A

\(\Rightarrow AD\perp AE\) → △ADE vuông tại A

c) Kẻ AH ⊥ BC

\(S_{ADB}=\dfrac{AH}{2}\cdot BD\)

\(S_{ADC}=\dfrac{AH}{2}\cdot CD\)

Mà \(DB=\dfrac{2}{3}DC\)

\(\Rightarrow S_{ADB}=\dfrac{2}{3}S_{ADC}\)

 

23 tháng 1 2021

AH
Akai Haruma
Giáo viên
1 tháng 5 2022

Lời giải:
a. $AB=AC=14$ cm nên $ABC$ là tam giác cân tại $A$
Do đó đường phân giác $AD$ đồng thời là đường trung tuyến 

$\Rightarrow BD=DC=\frac{BC}{2}=6$ (cm) 

b. 

$\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=1$ 

AH
Akai Haruma
Giáo viên
1 tháng 5 2022

Hình vẽ:

30 tháng 4 2021

#muon roi ma sao con

A B C D F E G

a, Xét tam giác BEF và tam giác DEA ta có : 

^BEF = ^DEA ( đ.đ ) vì AD // BC ( ABCD là hình bình hành )

\(\frac{AE}{EF}=\frac{DE}{BE}\) do AD // BC ( theo định lí Ta lét ) (1) 

Vậy tam giác BEF ~ tam giác DEA ( c.g.c )

b, Xét tam giác EGD và tam giác EAB ta có : 

^GED = ^EAB ( đ.đ )

\(\frac{AE}{EG}=\frac{BE}{ED}\)AB // DG ( theo định lí Ta lét )  (2) 

Vậy tam giác EGD ~ tam giác EAB ( c.g.c )

\(\Rightarrow\frac{EG}{EA}=\frac{ED}{EB}\Rightarrow EG.EB=ED.EA\)( đpcm )

c, Từ (2) ta có : \(\frac{AE}{EG}=\frac{BE}{ED}\Rightarrow\frac{EG}{AE}=\frac{ED}{BE}\)( 3 ) 

Từ (1) ; (3) ta có : \(\frac{AE}{EF}=\frac{EG}{AE}=\frac{ED}{BE}\Rightarrow AE^2=EG.EF\)

30 tháng 4 2021

A B C D E F H 3 6

a, Xét tam giác AEB và tam giác AFC ta có 

^AEB = ^AEC = 900

^A _ chung 

Vậy tam giác AEB ~ tam giác AFC ( g.g )

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.AC=AB.AF\)