K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔABC có DE//BC

nên \(\dfrac{DE}{BC}=\dfrac{AD}{AB}\)

=>\(\dfrac{DE}{8}=\dfrac{2}{5}\)

=>\(DE=\dfrac{2}{5}\cdot8=\dfrac{16}{5}=3,2\left(cm\right)\)

b: Xét tứ giác BDFC có

DF//BC

BD//CF

Do đó: BDFC là hình bình hành

=>DF=BC=8cm

DE+EF=DF

=>EF=DF-DE=8-3,2=4,8(cm)

Xét ΔIEF và ΔICB có

\(\widehat{IEF}=\widehat{ICB}\)(hai góc so le trong, EF//BC)

\(\widehat{EIF}=\widehat{CIB}\)(hai góc đối đỉnh)

Do đó: ΔIEF đồng dạng với ΔICB

=>\(\dfrac{IF}{IB}=\dfrac{EF}{CB}=\dfrac{4.8}{8}=\dfrac{3}{5}\)

a: Xét ΔABC có DE//BC

nên \(\dfrac{DE}{BC}=\dfrac{AD}{AB}\)

=>\(\dfrac{DE}{8}=\dfrac{2}{5}\)

=>\(DE=8\cdot\dfrac{2}{5}=\dfrac{16}{5}=3,2\left(cm\right)\)

b: Xét tứ giác BDFC có

BD//FC

DF//BC

Do đó: BDFC là hình bình hành

=>DF=BC=8cm

Ta có: DE+EF=DF

=>EF+3,2=8

=>EF=4,8(cm)

Xét ΔIEF và ΔICB có

\(\widehat{IEF}=\widehat{ICB}\)(hai góc so le trong, EF//BC)

\(\widehat{EIF}=\widehat{CIB}\)(hai góc đối đỉnh)

Do đó: ΔIEF đồng dạng với ΔICB

=>\(\dfrac{IF}{IB}=\dfrac{EF}{CB}=\dfrac{3}{5}\)

Xét ΔABC có DE//BC

nên \(\dfrac{AD}{AB}=\dfrac{DE}{BC}\)

=>\(\dfrac{DE}{8}=\dfrac{2}{5}\)

=>\(DE=2\cdot\dfrac{8}{5}=\dfrac{16}{5}=3,2\left(cm\right)\)

28 tháng 3 2017

Hình tự vẽ nha bạn

Vì AD là đường phân giác của góc A

=> \(\widehat{BAD}=\widehat{DAE}\)

Vì AB//ED =>\(\widehat{BAD}=\widehat{EDA}\)(2 góc so le trong)

Mà góc BAD=góc DAE=> \(\widehat{DAE}=\widehat{EDA}\)

=> tam giác EAD cân tại E

=>EA=ED

Ta có: AB//ED cắt FE//BC => BF=ED(theo tính chất đoạn chắn)

Mà EA=ED=> AE=BF(=ED)

31 tháng 12 2016

bài này khó

2 tháng 3 2018

Em tham khảo tại đây nhé.

Câu hỏi của Hoàng Trang - Toán lớp 7 - Học toán với OnlineMath

27 tháng 1 2019

cũng là đề bài này nhưng mk thêm 1 câu hỏi nữa là chứng minh: BK+DE lớn hơn AD.mong mn giúp mk

Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F. a) Chứng minh ED/AD + BF/BC = 1b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song...
Đọc tiếp

Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F. 

a) Chứng minh ED/AD + BF/BC = 1

b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.

Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.

a) Chứng minh CF = DK

b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.

Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.

Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.

Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.

6
17 tháng 3 2020

Bài 6 :

Tự vẽ hình nhá :)

a) Gọi O là giao điểm của AC và EF

Xét tam giác ADC có :

EO // DC => AE/AD = AO/AC (1)

Xét tam giác ABC có :

OF // DC

=> CF/CB = CO/CA (2)

Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm

Bài 7 :

A B C D G K M F E

a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)

Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG

Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM 

=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)

Từ (1) và (2) => CF / EF = DK / AD

Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È

=> CF = DK ( đpcm )

Bài 8 : 

A B C M N 38 11 8

Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )

Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :

AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38

=> 1140 = 19.AN + 722

=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )

=> NC = 38 - 12 = 26 ( cm )

4 tháng 2 2020

chắc sang năm mới làm xong mất