Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Kẻ đường cao từ đỉnh A của tam giác ABC cắt BC tại H.Trong tam giác ABC có :góc B=700, góc C=500 nên góc A=600.
Xét tam giác vuông ABH,ta có:góc BAH=200.Tương tự,ta cũng có góc CAH=400
Áp dụng HTCVGTTGV ABH,ta có :
BH=AB.sin góc BAH=25.sin 200=8,55 (cm)
AH=BH.tan góc B=8,55.tan 700 =23,49 (cm)
Tương tự,xét tam giác vuông AHC,ta có:
HC=AH.tan góc HAC=23,49.tan 400 =19,71 (cm)
Theo đề bài,ta có:BH=12cm;CH=18cm nên BC=30cm.
Áp dụng HTCVGTGV ABH,ta có: AH=tan góc B.BH=tan 600 .12 =12√3 (cm)
Vì tam giác ABH là tam giác vuông nên góc A1 =300
Xét tam giác vuông AHC,ta có:
AH2 +HC2 =AC2
(12√3)2 +182 =AC2
=>AC=6√21 (cm)
Áp dụng HTCVGTGV ABC,ta có: AH=tan góc C.CH
12√3=tan góc C.18
=> góc C=490 =>góc A2 =410 =>gócA= 710
Tương tự, Áp dụng HTCVGTGV ABH,ta có: AB=24cm
Vậy AB= 24cm, AC=6√21cm,BC=30cm,AH=12√3cm,góc A=710,góc C=490
Ròy đóa Tuyền
tui làm xong rồi!!! đăng lên hỏi thử coi đáp án đúng ko thôi
Tham khảo:Cho tam giác ABC có AB = 6cm; AC = 4,5; BC = 7,5cm
a) Chứng minh tam giác ABC vuông
b) Tính góc B,C và đường cao AH
c) Lấy M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB;AC lần lượt là P và Q. Chứng minh PQ=AM. Hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất
a) Ta thấy BC là cạnh dài nhất sẽ là cạnh huyền
Áp dụng Pytago đảo
AB² + AC² = 6² + 4,5² = 56.25
BC² = 7,5² = 56,25
=> AB² + AC² = BC²
=> Vuông tại A
=> Tam giác ABC là tam giác vuông
b)
sinB = AC / BC = 4,5 / 7,5 = 3 / 5
=> Góc B = 36°52'
sinC = AB / BC = 6 / 7,5 = 4 / 5
=> Góc C = 53°7'
c)
Ta dễ dàng cm AQMP là hình chữ nhật
Suy ra: 2 đường chéo hình chữ nhật bằng nhau.
Để PQ nhỏ nhất AM nhỏ nhất
AM VUÔNG GÓC VỚI BC
Vậy khi M là hình chiếu của điểm A trên BC thí pq nhỏ nhất
1.
Kẻ đường cao CH
Xét tam giác vuông HCB,ta có:
góc B + góc C1 =900
600 + góc C1 =900
=> góc C1 = 300 => góc C2 =100
Áp dụng hệ thức cạnh và góc trong tam giác vuông CBH và tam giác vuông CAH,ta có:
HB= BC x cot góc B = 9 x cot 600 = 3√3 (cm)
=>HC=BC2 - HB2 =92 - (3√3)2 = 3√6 (cm) (Đinh lí Py-ta-go)
AH= HC x tan góc C2 = 3√6 x tan 100 =1,3 (cm)
Ta có: AB = AH + HB nên AB = AH + HB =6,49 (cm)
AC = AH : sin góc C2 = 7,49 (cm)
Vậy AB = 6,49 cm ; AC = 7,49 cm
2.
Kẻ đường cao AH.
Áp dụng hệ thức cạnh và góc trong tam giác vuông ABH,ta có:
BH = AB x cos góc B = 3,2 x cos 700 = 1,09 (cm)
AH= BH x tan góc B =1,09 x tan 700 = 2,99 (cm)
Ta có : BC - BH = HC
=> HC = 6,2 - 2,99 = 3,21 (cm)
Áp dụng định lí Py-ta-go vào tam giác vuông AHC,ta có:
AC2 = AH2 +HC2 = (2,99)2 +(3,21)2 =>AC= 4,39 (cm)
Vậy AC = 4,39 cm.
Sai có gì góp ý với tui nha
1:
cot B=5/8
=>tan B=8/5
=>AC/AB=8/5
=>AC=8cm
=>BC=căn 5^2+8^2=căn 89(cm)
a. Ta có: \(BC^2=100
\)
\(AB^2+AC^2=100\)
Vì \(AB^2+AC^2=BC^2\left(=100\right)\)
Nên ABC vuông tại A (Pytago đảo)
b. Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lý 3- HTL ta có:
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot8}{10}=4,8\)
=> AH=4,8
\(c.SinB=\dfrac{6}{10}=\dfrac{3}{5}=>B\cong37\)
\(SinC=\dfrac{8}{10}=\dfrac{4}{5}=>53\)
d. Ta có: Tam giác AHC vuông tại H
Áp đụng định lý Pytago vào tam giác ta được
\(HC^2=AC^2-AH^2\)
= 36-23,04=12,96
=>HC=3,6
\(SAHC=\dfrac{1}{2}\cdot AH\cdot HC=\dfrac{1}{2}\cdot4,8\cdot3,6=8,64\)
a) Ta có:
\(AC^2=13^2=169\)
\(AB^2+BC^2=5^2+12^2=25+144=169\)
\(\Rightarrow AB^2+BC^2=AC^2\)
\(\Rightarrow\Delta ABC\) vuông tại B (theo định lý Pytago đảo)
b) Ta có:
\(sinA=cosC=\dfrac{BC}{AC}=\dfrac{12}{13}\)
\(cosA=sinC=\dfrac{AB}{AC}=\dfrac{5}{13}\)
\(tanA=cotC=\dfrac{BC}{AB}=\dfrac{12}{5}\)
\(cotA=tanC=\dfrac{AB}{BC}=\dfrac{5}{12}\)
a. \(\Delta ABC\) có
\(AB^2+BC^2=5^2+12^2=169\)
\(AC^2=13^2=169\)
\(\Rightarrow AC^2=AB^2+BC^2\)
\(\Rightarrow\Delta ABC\perp tại.B\)
b. \(sin.A=\dfrac{BC}{AC}=\dfrac{12}{13}\\ cos.A=\dfrac{AB}{AC}=\dfrac{5}{13}\\ tan.A=\dfrac{BC}{AB}=\dfrac{12}{5}\\ cot.A=\dfrac{AB}{BC}=\dfrac{5}{12}\)
\(sin.C=\dfrac{AB}{AC}=\dfrac{5}{13}\\ cos.C=\dfrac{BC}{AC}=\dfrac{12}{13}\\ tan.C=\dfrac{AB}{BC}=\dfrac{5}{12}\\ cot.C=\dfrac{BC}{AB}=\dfrac{12}{5}\)
a) ta xét tam giác ABC có :
\(AB^2+BC^2=5^2+12^2=AC^2=13^2\)
yheo định lí đảo pitgo
=> tam giavs ABC vuông tại B
b) ta có sin A=\(\frac{BC}{AC}=\frac{12}{13}\)
cosA=\(\frac{AB}{AC}=\frac{5}{12}\)
tan A=\(\frac{BC}{AB}=\frac{12}{5}\)
cotA =\(\frac{AB}{BC}=\frac{5}{12}\)
sin C=cosA=\(\frac{5}{12}\)
cosC=sinA=\(\frac{12}{13}\)
tanC =cot A=\(\frac{5}{12}\)
cotC=tanC=\(\frac{12}{5}\)
UK,khỏi cần cảm ơn không có gì đâu,bye bn mk đi nghủ đây.