K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

A N M D E F G L P Q T H K I I J J 1 2 1 2

a) Xét đường tròn (J1) có: ^HJ1D = 2.^HMD (^HMD=1/2.Sđ(HD ). Tương tự: ^KJ2D = 2.^KND

Dễ thấy tứ giác MEFN nội tiếp (Do ^MEN = ^MFN) => ^DMH = ^DNK (2 góc nội tiếp cùng chắn cung EF)

Do đó: ^HJ1D = ^KJ2D. Mà các tam giác HJ1D và KJ2D cân tại J1 và J2 => ^J2DK + 1/2.^HJ1D = 900

Hay ^J2DK + ^HMD = 900 => J2D vuông góc EM. Có J1H vuông góc EM => J2D // J1H

=> ^J1DJ2 = ^HJ1D (So le trong) => ^HDK = ^J1DJ2 + ^J1DH + ^J2DK = ^HJ1D + ^J1DH + ^J1HD = 1800

=> 3 điểm K,H,D thẳng hàng. Lại có: ^AHD = 1/2.Sđ(HD;  ^AKD = 1/2.Sđ(KD => ^AHD = ^AKD

Từ đó: ^AHK = ^AKH => \(\Delta\)HAK cân tại A => AH=AK

Gọi giao điểm của tia AD với (I1) và (J1) lần lượt là P' và Q'. Ta sẽ chứng minh P' trùng P; Q' trùng Q.

Theo hệ thức lượng trong đường tròn: AH2 = AD.AQ' => AK2 = AD.AQ' => \(\Delta\)ADK ~ \(\Delta\)AKQ' (c.g.c)

=> ^AKD = ^AQ'K = 1/2.Sđ(DK => Điểm Q' nằm trên (J2) => Q' trùng Q (1)

Tương tự: AE.AM = AD.AP'; AE.AM = AF.AN => AF.AN = AD.AP' => \(\Delta\)ADF ~ \(\Delta\)ANP' (c.g.c)

=> ^ADF = ^ANP' => Tứ giác DFNP' nột tiếp => Điểm P' thuộc (DFN) hay P' thuộc (I2) => P' trùng P (2)

Từ (1) và (2) => Tia AD đi qua 2 điểm P và Q hay 3 điểm D,P,Q thẳng hàng (đpcm).

b) Định trên đoạn thẳng EF một điểm T thỏa mãn \(\frac{ET}{FT}=\frac{HD}{KD}\)

Ta thấy ^GEA = ^GFA => ^GEH = ^GFK. Kết hợp với ^GHE = ^GKF => \(\Delta\)GEH ~ \(\Delta\)GFK (g.g)

=> \(\frac{GE}{GH}=\frac{GF}{GK}\). Lại có: ^EGF = ^EAF = ^HGK (Các góc nội tiếp) => \(\Delta\)GEF ~ \(\Delta\)GHK (c.g.c)

Do T và D định trên các cạnh EF, HK các tỉ số tương ứng bằng nhau nên \(\Delta\)GTF ~ \(\Delta\)GDK (c.g.c)

=> \(\frac{GT}{GD}=\frac{GF}{GK}\). Nhưng ^TGD = ^FGK (=^TGF - ^TGK) nên \(\Delta\)GTD ~ \(\Delta\)GFK (c.g.c) 

=> ^GDT = ^GKF. Mà ^GKF = ^GQD => ^GDT = ^GQD = 1/2.Sđ(GD => DT là tia tiếp tuyến của đường tròn (DGQ) (3)

Mặt khác:^GLE = ^GFE = ^GKH = ^GQH. Dễ thấy: \(\Delta\)LEF ~ \(\Delta\)QHK. Từ \(\frac{ET}{FT}=\frac{HD}{KD}\)=> \(\Delta\)ELT ~ \(\Delta\)HQD

=> ^ELT = ^HQD => ^ELT - ^GLE = ^HQD - ^GQH => ^GLT = ^GQD. Mà ^GQD = ^GDT (cmt) nên ^GLT = ^GDT 

Từ đó có: Tứ giác GDLT nội tiếp hay điểm T nằm trên đường tròn (DLG)   (4)

Qua (3) và (4) suy ra: Tiếp tuyến tại D của đường tròn (DGQ) cắt EF tại điểm T nằm trên đường tròn (DLG) (đpcm).

25 tháng 9 2015

ở đây ko có lớp 10 đâu.

25 tháng 9 2015

Bổ đề: Nếu tam giác ABC có tâm đường tròn ngoại tiếp O và trực tâm H thì \(\vec{OH}=\vec{OA}+\vec{OB}+\vec{OC}\).   

Chứng minh: Xét hiệu \(\vec{s}=\vec{OA}+\vec{OB}+\vec{OC}-\vec{OH}=\left(\vec{OA}+\vec{OB}\right)+\vec{HA}\),  có phương vuông góc với BC, tương tư vector s có phương vuông góc với CA. vậy vector s vuông góc với hai phương khác nhau nên là vector không.

Bằng cách tính góc, ta có \(IA_1\perp B_1C_1,IB_1\perp A_1C_1\to\)  I chính là trực tâm tam giác A1B1C1. Từ đó áp dụng bổ đề 1, cho ta ngay a)

b)  Ta có  \(\vec{OA_1}=\frac{R}{r}\vec{IA_2},\vec{OB_1}=\frac{R}{r}\vec{IB_2},\vec{OC_1}=\frac{R}{r}\vec{IC_2}\to\vec{OA_1}+\vec{OB_1}+\vec{OC_1}\)

\(=\frac{R}{r}\left(\vec{IA_2}+\vec{IB_2}+\vec{IC_2}\right)=3\frac{R}{r}\vec{IG'}\)  trong đó G' là trọng tâm tam giác A2B2C2. Theo câu a, ta suy ra véc tơ OI bằng 3R/r lần véc tơ IG', do đó điểm O nằm trên đường thẳng IG'. Vì I là tâm đường tròn ngoại tiếp tam giác A2B2C2 và G' là trọng tâm nên IG' chính là đường thẳng Ơ-le của tam giác A2B2C2. Suy ra OI chính là đường thẳng Ơ le của tam giác A2B2C2

 

 

28 tháng 10 2019

A B C M Y Y' X P Q N K L (O ) 1 (O ) 2

Dựng một đường tròn đi qua M và X đồng thời tiếp xúc với BC, đường tròn đó cắt (O1) tại Y' khác M.

Gọi Y'M và XM cắt đường tròn (AXY') lần lượt tại K và L (K khác Y'; L khác X); BC cắt (O1);(O2) tại P,Q; QX cắt PY' tại N

Ta có ^AXN = 1800 - ^AXQ = 1800 - ^AMQ = ^AMP = ^AY'N, suy ra N thuộc đường tròn (AXY')

Do vậy ^AKM = ^ANP mà ^AMK = ^APN nên \(\Delta\)KAM ~ \(\Delta\)NAP (g.g) suy ra AK.AP = AM.AN

Tương tự \(\Delta\)MAL ~ \(\Delta\)QAN (g.g) thì AL.AQ = AM.AN. Từ đó AK.AP = AL.AQ, dễ có \(\Delta\)LAK ~ \(\Delta\)PAQ (*)

Vì ^XMQ = ^XY'M = ^MLK nên KL // PQ, kết hợp với (*) suy ra (AL,AP) = (AK,AQ) = (KL,PQ) = 0o

Từ đây P,L,A thẳng hàng và Q,K,A thẳng hàng. Khi đó PL.PA = PN.PY'; QK.QA = QX.QN   (1)

Mặt khác \(\frac{KM}{NP}=\frac{AK}{AN};\frac{LM}{NQ}=\frac{AL}{AN}\Rightarrow\frac{AK}{AL}=\frac{KM}{NP}.\frac{NQ}{LM}\Rightarrow\frac{QN}{PN}=\frac{AK}{AL}.\frac{LM}{KM}\) (2)

Từ (1) và (2) suy ra \(\frac{QX.QN}{PN.PY'}=\frac{QX}{PY'}.\frac{AK}{AL}.\frac{LM}{KM}=\frac{QK.QA}{PL.PA}\Rightarrow\frac{QX}{PY'}.\frac{LM}{KM}=\frac{AK}{AL}\)

\(\Leftrightarrow\frac{QX}{PY'}=\frac{AK}{AL}.\frac{KM}{LM}\Rightarrow\frac{QX.AM}{PY'.AM}=\frac{AQ.MX}{AP.MY'}\)

Chú ý rằng tứ giác AQXM là tứ giác điều hòa, như vậy PY'.AM = AP.MY'. Suy ra tứ giác APY'M điều hòa

Ta thấy tiếp tuyến tại A của (O1) cắt AM tại C, do đó CY' cũng là tiếp tuyến của (O1)

Lại có CY là tiếp tuyến từ C đến (O1) nên Y trùng Y'. Vậy (MXY) tiếp xúc với BC tại M (đpcm).