Cho tam giác ABC có AB = 5c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: BC2=(52)2=50BC2=(52)2=50

AB2+AC2=52+52=50AB2+AC2=52+52=50

Do đó: BC2=AB2+AC2BC2=AB2+AC2(=50)

Xét ΔABC có BC2=AB2+AC2BC2=AB2+AC2(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

a) Ta có: BC2=(5√2)2=50BC2=(52)2=50

AB2+AC2=52+52=50AB2+AC2=52+52=50

Do đó: BC2=AB2+AC2BC2=AB2+AC2(=50)

Xét ΔABC có BC2=AB2+AC2BC2=AB2+AC2(cmt)

nên ΔABC vuông tại A

a) Ta có: \(BC^2=\left(5\sqrt{2}\right)^2=50\)

\(AB^2+AC^2=5^2+5^2=50\)

Do đó: \(BC^2=AB^2+AC^2\)(=50)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

12 tháng 1 2022

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

⇔BH=CH(hai cạnh tương ứng)

b) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(BH^2+AH^2=AB^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=5^2-4^2=9\)

hay BH=3(cm)

Vậy: BH=3cm

c) Ta có: ΔABH=ΔACH(cmt)

nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{DAH}=\widehat{EAH}\)

Xét ΔDAH vuông tại D và ΔEAH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)(cmt)

Do đó: ΔDAH=ΔEAH(cạnh huyền-góc nhọn)

Suy ra: AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

12 tháng 1 2022

mik đọc lại cx thấy sai sai :))))))))))))

23 tháng 1 2021

A B C 10 8 I D

a, Áp dụng định lí Pi ta go tam giác ABC ta có : 

AB^2 + AC^2 = BC^2 

AB^2 = BC^2 - AC^2 = 100 - 64 = 36

AB = \(\sqrt{36}=6\)

b, Xét tam giác BAI và tam giác ADI 

AI chung 

^A = ^D = 90^0 

AI = ID ( BI phân giác )

=> tam giác BAI = tam giác ADI ( ch - cgv ) 

=> AB = BD ( 2 cạnh tương ứng )

hay tam giác ABD cân ( đpcm ) 

 Áp dụng định lí Pytago vào tam giác vuông ABC ta được:

AB2=BC2-AC2=102-82=62

=> AB=6 cm.

24 tháng 12 2021

a) Xét tam giác ABM và tam giác ACM có

AB=AC (gt)

MB=MC(M tđ BC)

AM chung

tam giác ABM = tam giác ACM (c.c.c) (đpcm)

b) Vì AB=AC => tam giác ABC là tam giác cân tại A

Mà: tam giác ABM = tam giác ACM (c.c.c) (cmt)

=> ^AMB=^AMC (2 góc tương ứng)

=> ^AMB+^AMC=180o

=> ^AMB=^AMC = 90o

=> AM_|_CM (đpcm)

c) Vì AH=HK (gt)

=> AHK là tam giác cân tại A

Mà: AM_|_BC (AM_|_BC) (AM_|_CM) (cmt) 

Lại có: I giao điểm của AM và HK => I thuộc AM

=> AI_|_HK 

=> HK//BC (đpcm)

d) Vì tam giác AHK cân tại A

Mà ^HAK=60o

=> tam giác AHK là tam giác đều 

=> ^AHK=^HAK=60o

Vậy ^AHK=60o

ABCMHK----60I

(: olm lag quá nên gửi bài chậm