K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có : AB2 = 52 = 25 cm

Mà AC2 + BC2 = 42 + 32 = 15 + 9 = 25cm

=> AB2 = AC2 + BC2 

=> ∆ABC vuông tại C 

b) Xét ∆ vuông ACE và ∆ vuông AKE ta có : 

AE chung 

CAE = BAE ( AE là phân giác CAB )

=> ∆ACE = ∆AKE ( ch-gn)

=> AC = AK = 3cm

Mà AK + KB = AC 

=> KB = 5 - 3 = 2cm

c ) Xét ∆ vuông KEB ta có :

KE < EB ( Quan hệ giữa cạnh huyền và cạnh góc vuông) 

Mà ∆ACE = ∆AKE (cmt)

=> CE = EK 

=> EC< EB 

d) Vì ∆ACE = ∆AKE (cmt)

=> AC = AK 

=> ∆ACK cân tại A 

Xét ∆ vuông ECD và ∆ vuông CKB ta có : 

CE = EK (cmt)

KEB = CED ( đối đỉnh) 

=> ∆ECD = ∆CKB (cgv -gn)

=> CD = KB ( tương ứng) 

Mà AC + CD = AD 

AK + KB = AB 

=> AD = AB 

=> ∆ABD cân tại A

Vì ∆ACK cân tại A (cmt)

=> ACK = \(\frac{180°\:-\:CaB}{2}\)

Vì ∆ABD cân tại A 

=> ADC = \(\frac{180°\:-\:CAB}{2}\)

=> ADC = ACK 

Mà 2 góc này ở vị trí đồng vị 

=> CK //DB 

a) Ta có : 

BC2 = 25cm

AC2 + AB2 = 9 + 16 = 25cm

=> BC2 = AB+ AC2

=> ∆ABC vuông tại C 

b) Xét ∆ vuông CAE và ∆ vuông KAE ta có :

AE chung 

CAE = KAE ( AE là phân giác )

=> ∆CAE = ∆KAE (ch-gn)

=> AC = AK = 3cm

Mà AK + KB = AB

=> KB = 2cm 

c) Vì ∆CAE = ∆KAE (cmt)

=> CE = EK 

Xét ∆ vuông KEB ta có : 

EK > EB ( Trong ∆ vuông cạnh góc vuông luôn luôn nhỏ hơn cạnh huyền)

Mà EK = CE 

=> CE< EB 

19 tháng 7 2019

a ) \(\Delta ABC\)có : AC2 + BC2 = 32 + 42 = 25

                              AB2 = 52 = 25

=> AC2 + BC2 = AB2

Theo đ/l Py - ta - go đảo => Tam giác ABC vuông

a) Có \(AB^2=5^2=25\) ; \(AC^2+BC^2=3^2+4^2=25\)

=> \(AB^2=AC^2+BC^2\)

=> \(\Delta ABC\) vuông tại C

b) Xét \(\Delta CAE\)\(\Delta KAE\) có :

\(\widehat{ACE}=\widehat{AKE};\widehat{CAE}=\widehat{KAE};AE:chung\)

=> \(\Delta CAE\) = \(\Delta KAE\)

=> AC = AK = 3cm ; CE = KE

Có : BK = AB - AK = 5- 3 = 2cm

c) Xét \(\Delta EBK\)vuông tại K

=> EB > EK mà EK = EC

=> EB > EC

d) Có AC = AK => \(\Delta AKC\)cân tại A

=> \(\widehat{2AKC}=180^o-\widehat{A}\) (1)

Xét \(\Delta CED\)\(\Delta KEB\)có :

\(\widehat{ECD}=\widehat{EKB};\widehat{CED}=\widehat{KEB};CE=KE\)

=> \(\Delta CED\) = \(\Delta KEB\)

=> CD = KB

Có AD = AC + CD ; AB = AK + KB

=> AD = AB

=> \(\Delta ADB\) cân tại A

=> \(2\widehat{ABD}=180^o-\widehat{A}\) (1)

Từ ( 1 ) và (2) => \(\widehat{AKC}=\widehat{ABD}\) mà 2 góc này nằm ở vị trí đồng vị

=> CK // BD

(^-^'')CẦN GIẢI GẤP ĐỐNG BÀI NÀY(Có cả hình ở mỗi bài nha!)Câu 1: Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC (D∈AC),CE vuông góc với AB ( E ∈ AB ). Gọi O là giao điểm của BD và CE. Chứng minh : a) BD = CEb) Tam giác OEB bằng tam giác ODCc) AO là tia phân giác của góc BACd) Gọi M là trung điểm của BC. Chứng minh :  A,O,M thẳng hàng.Câu 2 :Câu 3 :Cho tam giác ABC có AC>AB. Nối A với trung điểm M của...
Đọc tiếp

(^-^'')
CẦN GIẢI GẤP ĐỐNG BÀI NÀY
(Có cả hình ở mỗi bài nha!)

Câu 1: Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC (D∈AC),CE vuông góc với AB ( E ∈ AB ). Gọi O là giao điểm của BD và CE. Chứng minh : 
a) BD = CE
b) Tam giác OEB bằng tam giác ODC
c) AO là tia phân giác của góc BAC
d) Gọi M là trung điểm của BC. Chứng minh :  A,O,M thẳng hàng.

Câu 2 :

Câu 3 :Cho tam giác ABC có AC>AB. Nối A với trung điểm M của BC. Trên tia AM lấy điểm E sao cho M là trung điểm của AE, Nối C với E. 
a) So sánh AB và CE
b) Chứng minh : \(\frac{AC-AB}{2}< AM< \frac{AC+AB}{2}.\)

Câu 4: Cho ∆ABC vuông tại C có góc A = 60o. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK ⊥ AB( K ∈ AB ).Kẻ BD ⊥ AE( D ∈ AE ). Chứng minh: 

a) AC=AK và AE ⊥ CK
b) KA=KB
c) EB>AC
d) Ba đường thẳng AC,BD,KE đồng quy.

Câu 5: Cho ∆ABC có AB<AC. Trên cạnh AC lấy điểm D sao cho CD=AB. Hai đường trung trực của BD và AC cắt nhau tại E. Chứng minh rằng:
a)∆AEB = ∆CED
b) AE là tia phân giác trong tại đỉnh A của ∆ABC

4
8 tháng 4 2019

Càng nhanh càng tốt nha :D

17 tháng 7 2019

C A K B E D

Cm: a) Xét t/giác ACE và t/giác AKE

có: \(\widehat{ACE}=\widehat{AKE}=90^0\) (gt)

   AE : chung

 \(\widehat{CAE}=\widehat{KAE}\) (gt)

=> t/giác ACE = t/giác AKE (ch - gn)

=> AC = AK ; EC = EK (các cặp cạnh t/ứng)

Ta có: +) AC = AK (cmt) => A thuộc đường trung trực của CK

   +) EC = EK (cmt) => E thuộc đường trung trực của CK

Mà A \(\ne\)E => AE là đường trung trực của CK

=> AE \(\perp\)CK

b) Xét t/giác ABC có góc C = 900

=> \(\widehat{A}+\widehat{ABC}=90^0\)

=> \(\widehat{ABC}=90^0-\widehat{A}=90^0-60^0=30^0\)

Ta có: \(\widehat{CAE}=\widehat{EAB}=\frac{\widehat{A}}{2}=\frac{60^0}{2}=30^0\)

=> \(\widehat{EAB}=\widehat{ABE}=30^0\) => t/giác ABE cân tại E

=> AE = EB

=> AK = KB (quan hệ giữa đường xiên và hình chiếu)

(có thể xét qua 2 t/giác AEK và t/giác BEK)

c) Xét t/giác EKB có góc EKB = 90 độ

=> EB > KB (ch > cgv)

Mà KB = AK (Cmt); AK = AC (vì t/giác ACE = t/giác AKE)

=> EB > AC 

d) Ta có: AC \(\perp\)BC \(\equiv\)C

     KE\(\perp\)AB \(\equiv\)K

      BD \(\perp\)AD \(\equiv\)D

=> AC, BD. KE đi qua 1 điểm (t/c 3 đường cao)

17 tháng 7 2019

A B C E K D 1 2 1

a) Ta có : \(\widehat{BAC}=60^0\Rightarrow\widehat{A_1}=\widehat{A_2}=\widehat{B_1}=30^0.\)

\(\Delta ACE=\Delta AKE\left(CH-GN\right)\Rightarrow AC=AK\)=> \(\Delta ACK\)cân tại A => AE vừa là phân giác, vừa là trung tuyến => \(AE\perp CK\).

b) Từ câu a) => \(\Delta AEB\)cân tại E => AE = EB ; EK vừa là đường cao, vừa là trung tuyến => KA = KB.

c) Ta có AK \(\perp\)EK, theo quan hệ giũa đường vuông góc và đường xiên, ta có : AE > AK <=> AE > AC (vì AK = AC) <=> EB > AC (vì EB = AE).

d) Xét \(\Delta AEB\)có : \(BD\perp AE,AC\perp BE,EK\perp AB\)=> BD, AC, EK là ba đường cao của tam giác AEB => chúng đồng quy (theo tính chất ba đường cao trong tam giác).