K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

Ta có: AC2 + BC2 = 202 + 482 = 400 + 2304 = 2704 = 522 = AB2 

=> Tam giác ABC vuông tại C (Định lý Pytago đảo)

=> Góc C = 90 độ (t/c)

11 tháng 9 2016

Ta có: 

\(AC^2+BC^2=48^2+20^2=2704=52^2\)

=> Tam giác ABC vuông tại C (Định lý Pytago đảo)

\(\Rightarrow\widehat{C}=90^0\)

11 tháng 9 2016

90

Ta có: AC2 + BC2 = 202 + 482 = 400 + 2304 = 2704 = 522 = AB2

=> Tam giác ABC vuông tại C (Định lý Pi-ta-go đảo)

=> Khi đó góc C = 90o (t/c)

14 tháng 12 2017

Ta có: AC
2 + BC
2 = 20
2 + 48
2 = 400 + 2304 = 2704 = 52
2 = AB
2
=> Tam giác ABC vuông tại C (Định lý Pi-ta-go đảo)
=> Khi đó góc C = 90o (t/c)

chúc bn hok tốt @_@

15 tháng 5 2016

a, xét tam giác ABC và tam giác DAB có:

góc BAC = góc ADB=90 độ

góc ABC = góc BAD( so le trong của Ax//BC)

do đó: tam giác ABC đồng dạng với tam giác DAB(g-g)

b, áp dụng định lí pytago vào tam giác ABC vuông tại A có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)

theo cm câu a : tam giác ABC đồng dạng với tam giác DAB

=>\(\frac{AB}{AD}=\frac{BC}{AB}=\frac{AC}{BD}\)

\(\Rightarrow AD=\frac{AB^2}{BC}=\frac{15^2}{25}=9cm\)

\(BD=\frac{AB.AC}{BC}=\frac{15.20}{25}=12cm\)

c, \(S_{ABD}=\frac{1}{2}.AD.BD=\frac{1}{2}.9.12=54cm^2\)

 

17 tháng 5 2016

sao admin ko duyệt ạ

 

26 tháng 4 2019

A B C H

a) Xét tam giác HBA và tam giác ABC :

\(\widehat{AHB}=\widehat{BAC}\left(=90^0\right)\)

\(\widehat{ABC}\)chung

=> tam giác HBA \(~\)tam giác ABC ( đpcm )

b) Chứng minh tương tự câu a) ta có tam giác ABC \(~\)tam giác HAC

\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)

\(\Rightarrow AC^2=HC\cdot BC\)( đpcm )

c) Áp dụng đính lý Pytago vào tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)( cm )

Từ câu b) ta có : \(HC=\frac{AC^2}{BC}=\frac{20^2}{25}=16\)

Vậy....

4 tháng 5 2019

45 H B C D                                                                a,  CM: \(\Delta AHB\)đồng dạng voi\(\Delta CAB\)

- Vì \(AH\perp BC\Rightarrow\widehat{AHB=90^o}\)

- Xét \(\Delta AHB\)và \(\Delta CAB\)có:

\(\widehat{AHB}=\widehat{BAC}\)

\(\widehat{A}\)chung

\(\Rightarrow\Delta AHB\)đồng dạng voi \(\Delta CAB\)(g-g) (đpcm)

b, CM: \(AC^2=CH.BC\)

- Xét \(\Delta AHC\)và \(\Delta BAC\)có:

\(\widehat{AHC}=\widehat{BAC}\left(=90^o\right)\)

\(\widehat{C}\)chung

\(\Rightarrow\Delta AHC\)đòng dạng với\(\Delta BAC\)(g-g)

\(\Rightarrow\frac{AC}{BC}=\frac{HC}{AC}\)

\(\Leftrightarrow AC^2=CH.BC\left(đpcm\right)\)