Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\cos\alpha=\dfrac{4}{5}\)
\(\tan\alpha=\dfrac{3}{4}\)
\(\cot\alpha=\dfrac{4}{3}\)
1:
cot B=5/8
=>tan B=8/5
=>AC/AB=8/5
=>AC=8cm
=>BC=căn 5^2+8^2=căn 89(cm)
a: Xét ΔABC có
\(BC^2=AB^2+AC^2\)
hay ΔBCA vuông tại A
d) Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\)
hay \(\widehat{B}\simeq53^0\)
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=70^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{C}=37^0\)
a. Ta có: \(BC^2=100
\)
\(AB^2+AC^2=100\)
Vì \(AB^2+AC^2=BC^2\left(=100\right)\)
Nên ABC vuông tại A (Pytago đảo)
b. Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lý 3- HTL ta có:
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot8}{10}=4,8\)
=> AH=4,8
\(c.SinB=\dfrac{6}{10}=\dfrac{3}{5}=>B\cong37\)
\(SinC=\dfrac{8}{10}=\dfrac{4}{5}=>53\)
d. Ta có: Tam giác AHC vuông tại H
Áp đụng định lý Pytago vào tam giác ta được
\(HC^2=AC^2-AH^2\)
= 36-23,04=12,96
=>HC=3,6
\(SAHC=\dfrac{1}{2}\cdot AH\cdot HC=\dfrac{1}{2}\cdot4,8\cdot3,6=8,64\)
Ta có:
7.5^2=4.5^2+6^2
→BC2=AB2+AC2
→ΔABC vuông tại A
Ta có BD là phân giác góc B→DA/DC=BA/BC=35
→DA/DA+DC=3/3+5
→AD/AC=38
→AD=3/8AC=94
a) Ta có:
\(AC^2=13^2=169\)
\(AB^2+BC^2=5^2+12^2=25+144=169\)
\(\Rightarrow AB^2+BC^2=AC^2\)
\(\Rightarrow\Delta ABC\) vuông tại B (theo định lý Pytago đảo)
b) Ta có:
\(sinA=cosC=\dfrac{BC}{AC}=\dfrac{12}{13}\)
\(cosA=sinC=\dfrac{AB}{AC}=\dfrac{5}{13}\)
\(tanA=cotC=\dfrac{BC}{AB}=\dfrac{12}{5}\)
\(cotA=tanC=\dfrac{AB}{BC}=\dfrac{5}{12}\)
a. \(\Delta ABC\) có
\(AB^2+BC^2=5^2+12^2=169\)
\(AC^2=13^2=169\)
\(\Rightarrow AC^2=AB^2+BC^2\)
\(\Rightarrow\Delta ABC\perp tại.B\)
b. \(sin.A=\dfrac{BC}{AC}=\dfrac{12}{13}\\ cos.A=\dfrac{AB}{AC}=\dfrac{5}{13}\\ tan.A=\dfrac{BC}{AB}=\dfrac{12}{5}\\ cot.A=\dfrac{AB}{BC}=\dfrac{5}{12}\)
\(sin.C=\dfrac{AB}{AC}=\dfrac{5}{13}\\ cos.C=\dfrac{BC}{AC}=\dfrac{12}{13}\\ tan.C=\dfrac{AB}{BC}=\dfrac{5}{12}\\ cot.C=\dfrac{BC}{AB}=\dfrac{12}{5}\)