Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do tam giác ABC là tam giác đều nên .
Theo định lý côsin trong tam giác ABM ta có:
b) Theo định lý sin trong tam giác ABM ta có:
c) Ta có: BM + MC = BC nên MC = BC – BM = 6 - 2 = 4 cm.
Gọi D là trung điểm AM.
Áp dụng công thức độ dài đường trung tuyến trong tam giác ta có:
tham khảo
https://cungthi.online/cau-hoi/cho-tam-giac-abc-tap-hop-nhung-diem-m-thoaman-4mambmc-30238-1652.html
Gọi G là trọng tâm của ΔABC
⇒ \(3\overrightarrow{MG}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)
⇒ \(MA^2+MB^2+MC^{2^{ }}+2VT=9MG^2\)
⇒ VT = 9MG2 - MA2 + MB2 + MC2
⇒ \(\dfrac{a^2}{6}\) = 9MG2 - MA2 + MB2 + MC2
MA2 + MB2 + MC2
\(=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)
= 3MG2 + 2\(\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)+ GA2 + GB2 + GC2
= 3MG2 + \(GA^2+GB^{2^{ }}+GC^2\)
do \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
Vậy ta có
\(\dfrac{a^2}{6}=6MG^2-GA^2-GB^2-GC^2\)
⇔ \(\dfrac{a^2}{6}+\left(GA^2+GB^2+GC^2\right)=6MG^2\)(1)
Lưu ý, GA,GB,GC lần lượt bằng \(\dfrac{2}{3}\) độ dài các đường trung tuyến kẻ từ A,B,C. Nhưng do ΔABC đều nên chúng sẽ lần lượt bằng \(\dfrac{2}{3}\) đường cao kẻ từ A,B,C (đặt là ha ; hb; hc)
Dễ dàng tìm được ha = hb = hc = \(\dfrac{a\sqrt{3}}{2}\)
⇒ GA = GB = GC = \(\dfrac{a\sqrt{3}}{3}\)
⇒ GA2 = GB2 = GC2 = \(\dfrac{a^2}{3}\)
⇒ GA2 + GB2 + GC2 = a2
Thay vào (1)
\(\dfrac{a^2}{6}+a^2=3MG^2\) ⇔ MG2 = \(\dfrac{7a^2}{18}\)
⇔ MG = \(\dfrac{a\sqrt{14}}{6}\)
Vậy R = \(\dfrac{a\sqrt{14}}{6}\)
Ai xem hộ sai chỗ nào vs